Summary

肺癌细胞系中癌症干细胞的放射敏感性

Published: August 21, 2019
doi:

Summary

癌症干细胞的存在与放射治疗后复发或不良结果有关。本手稿描述了研究肺癌细胞系中癌症干细胞的放射敏感性的方法。

Abstract

癌症干细胞(CSCs)的存在与放射治疗后复发或不良结果有关。研究耐辐射CSC可以为克服无线电电阻提供线索。电压封闭钙通道[2]1亚单位等分形式5被报告为非小细胞肺癌(NSCLC)细胞系中耐辐射CSC的标记物。以钙通道+2+1亚单位为例,提出了NSCLC细胞系中CSC对辐射敏感性的研究方法。CSC按流动细胞测定用假定标记排序,通过球形形成测定评估被分类细胞的自更新能力。殖民地形成测定,确定有多少细胞失去产生后代形成菌落的能力后,一定剂量的辐射,然后进行评估已分的细胞的辐射敏感性。本手稿提供了研究CSC的辐射敏感性的初步步骤,为进一步了解基本机制奠定了基础。

Introduction

放射治疗在癌症治疗中起着重要的作用。然而,放射性抗癌干细胞(CSCs)的存在可能导致放射治疗1、2后复发或不良结果。CSC的特点是其自我更新能力和产生异源性癌细胞的能力3。具有更有效的DNA损伤修复能力或更高水平的自由基清除系统或其他机制的装甲,CSC相对耐放射治疗4,5,6,7,8.识别CSC标记并探索其机制将有助于开发能够克服放射性阻力而不增加正常组织损伤的药物。

电压封闭钙通道[2]1亚单位等分形式5已报告为NSCLC细胞系9中耐辐射CSC的标记。#2_1 最初被确定为肝细胞癌 (HCC)10的 CSC 标记。使用从同一患者的原发性肿瘤和复发性肿瘤中提取的一对HCC细胞系进行减法免疫,鉴定出一种名为1B50-1的抗体,专门针对复发性HCC细胞。1B50-1阳性细胞在体外表现出较高的球形形成效率和体内的高肿瘤原性。其抗原通过质谱鉴定,为钙通道[2]1亚单位等分形式5。_2_1 在CSC中具体表达,在大多数正常组织中无法检测到,使其成为针对CSC10的潜在候选者。#2_1 也可以作为 NSCLC 细胞系的 CSC 标记,并且通过提高 DNA 损伤修复效率来部分向 NSCLC 细胞提供放射性电阻,以响应辐射9

研究耐辐射CSC可以为克服无线电电阻提供线索。以NSCLC中的β2+1为例,提出了研究CSC辐射敏感性的主要方法。通常,CSC用假定表面标记分离,并比较阳性和阴性细胞群的干细胞特征和放射敏感性。无血清培养基的球形形成,辅以支持自我更新的生长因子,是评估体外细胞干细胞的有益测定。高球形形成能力的细胞在注射到免疫缺陷小鼠10、11、12中时,很可能表现出高肿瘤原性。然后,利用殖民地形成测定来评估细胞的辐射敏感性,从而确定有多少细胞在辐射13后失去了产生形成菌落的后代的能力。

Protocol

注:步骤在指示温度下执行。对于未提及温度的步骤,在室温 (18-25 °C) 下执行。细胞培养基应储存在4°C,其他试剂应根据制造商的指南储存。在加入细胞之前,培养基应预加热至37°C。 1. 细胞排序 抗体结合注:考虑到潜伏时间较短,直接标记抗体是细胞分拣的首选。如果没有商业直接标记的抗体,请使用荧光成因结合试剂,根据制造商指南将抗体与荧光染料结…

Representative Results

对2+1高和±2+1低A549细胞进行了排序(图1A)。某些标记可能显示不同的群体,并且易于接近。然而,一些标记只显示高和低表达模式,而不是明显的正负群体。在此情况下,等型控件对于门控非常重要。qPCR验证了已排序细胞中β2+1的表达。CACNA2D1,编码β2+1的基因,在排序的β2+1高细胞中比β2+1低细胞的表达更高(图1B)。 球?…

Discussion

该协议描述了研究体外癌细胞系中CSCs的放射性敏感性的方法。在本研究中,在NSCLC细胞系中,β2+1的表达是连续的。因此,门控基于等型控件。在分拣之前,应通过流式细胞测定在多个细胞系中检查β2+1表达,并通过QPCR或西方斑点验证。建议通过流式细胞测定、在荧光显微镜下观察荧光或QPCR(排序后),重新分析已排序的β2+1和β2+1低细胞的表达。

球形形成测定是评价自我更?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(81402535和81672969)和国家重点研究开发项目(2016YFC0904703)的支持。

Materials

0.5% Trypsin-EDTA (10X), no phenol red Thermo Fisher 15400054 Dilute in to 0.05% (1X) with autoclaved distilled water
1B50-1 This antibody is produced and friendly supplied by Laboratory of Carcinogenesis and Translational Reseach (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute. See reference 10. Alternatively, commercial antibody of calcium channel α2δ1 subunit can be used (ABCAM, ab2864) (Yu, et al., Am J Cancer Res, 2016; 6(9): 2088-2097)
4% formaldehyde solution Solarbio G2160
A549 ATCC RRID: CVCL_0023
B27 Thermo Fisher 17504044
Biological Safety Cabinet Thermo Fisher 1336
Centrifuge Eppendorf 5910R
DMEM/F-12 Thermo Fisher 12500062
EGF Recombinant Human Protein Thermo Fisher PHG0311
Fetal bovine serum Thermo Fisher 16140071
FGF-Basic (AA 1-155) Recombinant Human Protein Thermo Fisher PHG0261
Flow cytometer/cell sorter BD FACSARIA III
H1299 ATCC RRID: CVCL_0060
H1975 ATCC RRID: CVCL_1511
Lightning-Link Fluorescein Kit Innova Biosciences 310-0010
linear accelerator VARIAN CLINAC 600C/D
Methyl cellulose Sigma Aldrich M7027
Penicillin-Streptomycin, Liquid Thermo Fisher 15140122
Phosphate buffered saline Solarbio P1020
RPMI-1640 Thermo Fisher 11875093
SYBRGREEN TOYOBO QPK-201
TRIzol Thermo Fisher 15596026
Violet crystal staining solution Solarbio G1062

Riferimenti

  1. Brunner, T. B., Kunz-Schughart, L. A., Grosse-Gehling, P., Baumann, M. Cancer stem cells as a predictive factor in radiotherapy. Seminars in Radiation Oncology. 22 (2), 151-174 (2012).
  2. Baumann, M., Krause, M., Hill, R. Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancers. 8 (7), 545-554 (2008).
  3. Clarke, M. F., et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Ricerca sul cancro. 66 (19), 9339-9344 (2006).
  4. Bao, S., et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444 (7120), 756-760 (2006).
  5. Wang, W. J., et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Ricerca sul cancro. 73 (3), 1219-1231 (2012).
  6. Diehn, M., et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458 (7239), 780-783 (2009).
  7. Gomez-Casal, R., et al. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Molecular Cancer. 12 (1), 94 (2013).
  8. Mihatsch, J., et al. Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro. Radiotherapy and Oncology. 99 (3), 300-306 (2011).
  9. Sui, X., Geng, J. H., Li, Y. H., Zhu, G. Y., Wang, W. H. Calcium channel α2δ1 subunit (CACNA2D1) enhances radioresistance in cancer stem-like cells in non-small cell lung cancer cell lines. Cancer Management and Research. 10, 5009-5018 (2018).
  10. Zhao, W., et al. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel α2δ1 subunit. Cancer Cell. 23 (4), 541-556 (2013).
  11. Moncharmont, C., et al. Targeting a cornerstone of radiation resistance: Cancer stem cell. Cancer Letters. 322 (2), 139-147 (2012).
  12. Zhang, W. C., et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 148 (1-2), 259-272 (2012).
  13. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J., van Bree, C. Clonogenic assay of cells in vitro. Nature Protocols. 1 (5), 2315-2319 (2006).
  14. O’Brien, C. A., Kreso, A., Jamieson, C. H. Cancer stem cells and self-renewal. Clinical Cancer Research. 16 (12), 3113-3120 (2010).
  15. Morgan, M. A., Lawrence, T. S. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clinical Cancer Research. 21 (13), 2898-2904 (2015).
  16. Yu, J., et al. Mechanistic exploration of cancer stem cell marker voltage-dependent calcium channel α2δ1 subunit-mediated chemotherapy resistance in small-cell lung cancer. Clin Cancer Res. 24 (9), 2148-2158 (2018).
check_url/it/60046?article_type=t

Play Video

Citazione di questo articolo
Sui, X., Geng, J., Yu, H., Li, Y., Wang, W. Radiosensitivity of Cancer Stem Cells in Lung Cancer Cell Lines. J. Vis. Exp. (150), e60046, doi:10.3791/60046 (2019).

View Video