Summary

無細胞自己誘導ワークフローを使用した24時間以内に細胞から無細胞タンパク質合成へ

Published: July 22, 2021
doi:

Summary

この研究は、 大腸菌(E.coli )からの細胞抽出物の調製とそれに続く無細胞タンパク質合成(CFPS)反応を24時間未満で記載する。無細胞自己誘導(CFAI)プロトコルの説明は、研究者の監督を減らし、得られる細胞抽出物の量を増やすために行われた改善を詳述する。

Abstract

無細胞タンパク質合成(CFPS)は、 インビトロで転写および翻訳機構を捕捉するバイオテクノロジープラットフォームとして成長してきました。数多くの開発により、CFPSプラットフォームは新規ユーザーにとってよりアクセスしやすくなり、アプリケーションの範囲が拡大しました。溶解物ベースのCFPSシステムの場合、細胞抽出物を様々な生物から生成することができ、その宿主のユニークな生化学を利用してタンパク質合成を増強することができる。過去20年以内に、 大腸菌 (E. coli) は、その手頃な価格と汎用性のためにCFPSをサポートするために最も広く使用されている生物の1つになりました。多くの重要な進歩にもかかわらず、 大腸菌 細胞抽出物調製のワークフローは、新規ユーザーがアプリケーションにCFPSを実装するための重要なボトルネックであり続けています。抽出準備ワークフローは時間がかかり、再現性のある結果を得るためには技術的な専門知識が必要です。これらの障壁を克服するために、私たちは以前、ユーザー入力と必要な技術的専門知識を減らす24時間無細胞自動誘導(CFAI)ワークフローの開発を報告しました。CFAIワークフローは、細胞抽出物を生成するために必要な労力と技術的スキルを最小限に抑えながら、得られる細胞抽出物の総量も増加させます。ここでは、アクセスを改善し、 大腸菌 ベースのCFPSの広範な実装をサポートするために、そのワークフローを段階的に説明します。

Introduction

バイオテクノロジー用途のための無細胞タンパク質合成(CFPS)の使用は、過去数年間で大幅に増加しています1,2,3この開発は、CFPSで発生するプロセスと各コンポーネントの役割を理解するための努力の増加に一部起因する可能性があります4,5。さらに、最適化されたセットアップと代替エネルギー源に起因するコスト削減により、無細胞技術は新規ユーザーの実装が容易になりました6,7,8,9。タンパク質合成に必要な転写および翻訳因子を実施するために、細胞抽出物は、無細胞反応10を駆動するためにしばしば使用される。最近公開されたユーザーガイドは、機能的な抽出を生成するための簡単なプロトコルを提供しており、新規ユーザーでも経験豊富なユーザーでも簡単に実装できます1,11,12,13,14。細胞抽出物は、通常、細胞培養物の溶解を通して得られ、これは、所望の特定の用途に応じて異なる生物を用いて増殖させることができる11516

大腸菌(E. coli)は、機能性抽出物17を生産するために最も一般的に使用される宿主生物の1つとして急速になっている。BL21スター(DE3)株は、外膜(OmpTプロテアーゼ)および細胞質(ロンプロテアーゼ)からプロテアーゼを除去し、組換えタンパク質発現に最適な環境を提供するため好ましい。さらに、DE3は、lacUV5プロモーターの制御下でT7 RNAポリメラーゼ(T7 RNAP)の遺伝子を保持するλDE3を含む。スター成分は、mRNA切断を防止する変異RNaseE遺伝子を含む 4,14,18,19.lacUV5プロモーターの下で、イソプロピルチオガラクトピラノシド(IPTG)誘導は、T7 RNAP2021の発現を可能にする。これらの株は、細胞を増殖および収穫するために使用され、抽出物調製のための原料を与える。細胞溶解は、ビーズ叩解、フレンチプレス、均質化、超音波処理、および窒素キャビテーション1、11、1222を含む様々な方法を用いて行うことができる。

大腸菌を使用する場合、細菌の培養と収穫のプロセスはほとんどのプラットフォームで一貫していますが、数日と激しい研究者の監督が必要です1,11,13。このプロセスは、一般に、LBブロス中での一晩の種子培養から始まり、一晩の成長時に、翌日に2xYTPG(酵母、トリプトン、リン酸緩衝液、グルコース)のより大きな培養物に接種される。このより大きな培養物の成長は、光学密度(OD)2.514,20で、初期から中期の対数段階に達するまで監視される。転写および翻訳の成分が、初期から中期の対数相において高度に活性であることが以前に実証されている23,24ので一定の測定が必要である。このプロセスは再現性のある抽出物を生成することができますが、私たちの研究室は最近、研究者の監督を減らし、所定の1リットルの細胞培養に対する抽出物の総収量を増加させ、経験豊富ユーザーと新規ユーザーの両方のための大腸菌ベースの抽出物調製へのアクセスを改善する無細胞自動誘導(CFAI)培地を使用する新しい方法を開発しました(図1).ここでは、CFAIワークフローを実装するためのステップバイステップガイドを提供し、細胞のストリークプレートから24時間以内に完了したCFPS反応に移行します。

Protocol

1. メディアの成長 表1に記載したように960mLのCFAI培地を調製し、KOHを用いてpHを7.2に調整した。 培養培地を2.5 Lバッフルフラスコに移し、121°Cで30分間オートクレーブした。 表1に記載したように40mLの糖液を調製する。溶液をフィルター滅菌して、別のオートクレーブ処理されたガラス容器に入れます。注:糖液は、さらに使用するまで30°Cの?…

Representative Results

CFAI培地を調製するとき、グルコースは、培地中の主要なエネルギー基質としてのラクトースおよびグリセロールの増加と交換された。さらに、CFAI培地の緩衝能も増加した。これらの具体的な成分を 表1に示す。 次いで、細胞をCFAI培地中でOD600 of 10および標準2.5の両方に増殖させ、抽出物量が異なるにもかかわらず抽出物品質との一貫性を示した。5OD…

Discussion

細胞増殖中の2つの重要な行動、すなわちT7 RNAPの誘導と特定のOD600での細胞の採取には、研究者の監督が伝統的に必要です。CFAIは、高品質の細胞抽出物を調製するために必要な研究者の時間と技術トレーニングを減らすために、これらの要件の両方をなくします。T7 RNAPの自己誘導は、グルコースを培地中の第一糖としてラクトースで置換することによって達成され、増殖を積極的に?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

著者らは、技術サポートのためにJennifer VanderKelen博士とAndrea Laubscherに感謝したいと思います。著者はまた、有益な議論のためにニコール・グレゴリオ、マックス・レヴァイン、アリッサ・マリン、ビョンチョル・ソ、オーガスト・ブルックウェル、エリザベス(リジー)ヴォイヴォダ、ローガン・バリントン、ジリアン・カスマンに感謝したいと思います。著者らはまた、Bill and Linda Frost Fund、Center for Applications in BiotechnologyのChevron Biotechnology Applied Research Endowment Grant、Cal Poly Research、Scholarly、およびNational Science Foundation(NSF-1708919)からの資金援助を認めている。

Materials

1.5 mL Microfuge Tubes Phenix MPC-425Q
1L Centrifuge Tube Beckman Coulter A99028
Avanti J-E Centrifuge Beckman Coulter 369001
CoA Sigma-Aldrich C3144-25MG
Cytation 5 Cell Imaging Multi-Mode Reader Biotek BTCYT5F
D-Glucose Fisher D16-3
D-Lactose Alfa Aesar J66376
DTT ThermoFisher 15508013
Folinic Acid Sigma-Aldrich F7878-100MG
Glycerol Fisher BP229-1
Glycine Sigma-Aldrich G7126-100G
HEPES ThermoFisher 11344041
IPTG Sigma-Aldrich I6758-1G
JLA-8.1000 Rotor Beckman Coulter 366754
K(Glu) Sigma-Aldrich G1501-500G
K(OAc) Sigma-Aldrich P1190-1KG
KOH Sigma-Aldrich P5958-500G
L-Alanine Sigma-Aldrich A7627-100G
L-Arginine Sigma-Aldrich A8094-25G
L-Asparagine Sigma-Aldrich A0884-25G
L-Aspartic Acid Sigma-Aldrich A7219-100G
L-Cysteine Sigma-Aldrich C7352-25G
L-Glutamic Acid Sigma-Aldrich G1501-500G
L-Glutamine Sigma-Aldrich G3126-250G
L-Histadine Sigma-Aldrich H8000-25G
L-Isoleucine Sigma-Aldrich I2752-25G
L-Leucine Sigma-Aldrich L8000-25G
L-Lysine Sigma-Aldrich L5501-25G
L-Methionine Sigma-Aldrich M9625-25G
L-Phenylalanine Sigma-Aldrich P2126-100G
L-Proline Sigma-Aldrich P0380-100G
L-Serine Sigma-Aldrich S4500-100G
L-Threonine Sigma-Aldrich T8625-25G
L-Tryptophan Sigma-Aldrich T0254-25G
L-Tyrosine Sigma-Aldrich T3754-100G
Luria Broth ThermoFisher 12795027
L-Valine Sigma-Aldrich V0500-25G
Mg(Glu)2 Sigma-Aldrich 49605-250G
Mg(OAc)2 Sigma-Aldrich M5661-250G
Microfuge 20 Beckman Coulter B30134
Molecular Grade Water Sigma-Aldrich 7732-18-5
NaCl Alfa Aesar A12313
NAD Sigma-Aldrich N8535-15VL
New Brunswick Innova 42/42R Incubator Eppendorf M1335-0000
NH4(Glu) Sigma-Aldrich 09689-250G
NTPs ThermoFisher R0481
Oxalic Acid Sigma-Aldrich P0963-100G
PEP Sigma-Aldrich 860077-250MG
Potassium Phosphate Dibasic Acros, Organics A0382124
Potassium Phosphate Monobasic Acros, Organics A0379904
PureLink HiPure Plasmid Prep Kit ThermoFisher K210007
Putrescine Sigma-Aldrich D13208-25G
Spermidine Sigma-Aldrich S0266-5G
Tris(OAc) Sigma-Aldrich T6066-500G
tRNA Sigma-Aldrich 10109541001
Tryptone Fisher Bioreagents 73049-73-7
Tunair 2.5L Baffled Shake Flask Sigma-Aldrich Z710822
Ultrasonic Processor QSonica Q125-230V/50HZ
Yeast Extract Fisher Bioreagents 1/2/8013

Riferimenti

  1. Gregorio, N. E., Levine, M. Z., Oza, J. P. A user’s guide to cell-free protein synthesis. Methods and Protocols. 2 (1), 1-34 (2019).
  2. Silverman, A. D., Karim, A. S., Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nature Reviews Genetics. 21 (3), (2020).
  3. Swartz, J. R. Expanding biological applications using cell-free metabolic engineering: An overview. Metabolic Engineering. 50, 156-172 (2018).
  4. Jared, B., Dopp, L., Tamiev, D. D., Reuel, N. F. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnology Advances. 37 (1), 246-258 (2019).
  5. Jewett, M. C., Swartz, J. R. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnology and Bioengineering. 86 (1), 19-26 (2004).
  6. Calhoun, K. A., Swartz, J. R. Energizing cell-free protein synthesis with glucose metabolism. Biotechnology and Bioengineering. 90 (5), 606-613 (2005).
  7. Levine, M. Z., Gregorio, N. E., Jewett, M. C., Watts, K. R., Oza, J. P. Escherichia coli-based cell-free protein synthesis: Protocols for a robust, flexible, and accessible platform technology. Journal of Visualized Experiments. (144), e58882 (2019).
  8. Sun, Z. Z., et al. Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression. System for Synthetic Biology. , 1-14 (2013).
  9. Pardee, K., et al. Portable, on-demand biomolecular manufacturing. Cell. 167, 248-254 (2016).
  10. Moore, S. J., Macdonald, J. T., Freemont, P. S. Cell-free synthetic biology for in vitro prototype engineering. Biochemical Society Transactions. 45 (3), 785-791 (2017).
  11. Cole, S. D., Miklos, A. E., Chiao, A. C., Sun, Z. Z., Lux, M. W. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synthetic and Systems Biotechnology. 5 (4), 252-267 (2020).
  12. Didovyk, A., Tonooka, T., Tsimring, L., Hasty, J. Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synthetic Biology. 6 (12), 2198-2208 (2017).
  13. Dopp, J. L., Reuel, N. F. Process optimization for scalable E. coli extract preparation for cell-free protein synthesis. Biochemical Engineering Journal. 138, 21-28 (2018).
  14. Kwon, Y. C., Jewett, M. C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Scientific Reports. 5, 8663 (2015).
  15. Endo, Y., Sawasaki, T. Cell-free expression systems for eukaryotic protein production. Current Opinion in Biotechnology. 17 (4), 373-380 (2006).
  16. Zemella, A., Thoring, L., Hoffmeister, C., Kubick, S. Cell-free protein synthesis: Pros and cons of prokaryotic and eukaryotic systems. ChemBioChem. 16 (17), 2420-2431 (2015).
  17. Laohakunakorn, N., Grasemann, L., Lavickova, B., Michielin, G. Bottom-up construction of complex biomolecular systems with cell-free synthetic biology. Frontiers in Bioengineering and Biotechnology. 8, (2020).
  18. Ahn, J. H., et al. Cell-free synthesis of recombinant proteins from PCR-amplified genes at a comparable productivity to that of plasmid-based reactions. Biochemical and Biophysical Research Communications. 338 (3), 1346-1352 (2005).
  19. Kim, T. W., et al. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. Journal of Biotechnology. 126 (4), 554-561 (2006).
  20. Hunt, J. P., et al. Streamlining the preparation of “endotoxin-free” ClearColi cell extract with autoinduction media for cell-free protein synthesis of the therapeutic protein crisantaspase. Synthetic and Systems Biotechnology. 4 (4), 220-224 (2019).
  21. Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification. 41, 207-234 (2005).
  22. Shrestha, P., Holland, T. M., Bundy, B. C. Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. BioTechniques. 53 (3), 163-174 (2012).
  23. Bosdriesz, E., Molenaar, D., Teusink, B., Bruggeman, F. J. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS Journal. 282 (10), 2029-2044 (2015).
  24. Zawada, J., Swartz, J. Maintaining rapid growth in moderate-density Escherichia coli fermentations. Biotechnology and Bioengineering. 89 (4), 407-415 (2005).
  25. Kim, J., Copeland, C. E., Padumane, S. R., Kwon, Y. C. A crude extract preparation and optimization from a genomically engineered Escherichia coli for the cell-free protein synthesis system: Practical laboratory guideline. Methods and Protocols. 2 (3), 1-15 (2019).
  26. Failmezger, J., Rauter, M., Nitschel, R., Kraml, M., Siemann-Herzberg, M. Cell-free protein synthesis from non-growing, stressed Escherichia coli. Scientific Reports. 7 (1), 1-10 (2017).
  27. Levine, M. Z., et al. Activation of energy metabolism through growth media reformulation enables a 24-h workflow for cell-free expression. ACS Synthetic Biology. 9 (10), 2765-2774 (2020).
  28. Martin, R. W., et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nature Communications. , 1-9 (2018).
  29. Soye, B. J. D., et al. Resource A highly productive, One-pot cell-free protein synthesis platform based on genomically recoded Escherichia coli resource. Cell Chemical Biology. 26 (12), 1743-1754 (2019).
  30. Ezure, T., Suzuki, T., Ando, E. A cell-free protein synthesis system from insect cells. Methods in Molecular Biology. , 285-296 (2014).
  31. Heide, C., et al. development and optimization of a functional mammalian cell-free protein synthesis platform. Frontiers in Bioengineering and Biotechnology. 8, 1-10 (2021).
check_url/it/62866?article_type=t

Play Video

Citazione di questo articolo
Smith, P. E. J., Slouka, T., Dabbas, M., Oza, J. P. From Cells to Cell-Free Protein Synthesis within 24 Hours Using Cell-Free Autoinduction Workflow. J. Vis. Exp. (173), e62866, doi:10.3791/62866 (2021).

View Video