Summary

定量免疫检测,以衡量在中心体的变异蛋白水平

Published: December 20, 2014
doi:

Summary

Here, a novel quantitative fluorescence assay is developed to measure changes in the level of a protein specifically at centrosomes by normalizing that protein’s fluorescence intensity to that of an appropriate internal standard.

Abstract

中心体是充当有丝分裂纺锤体的两极保持基因组的完整性,或装配初级纤毛以促进感觉功能在细胞中的小但很重要的细胞器。一个蛋白的水平可在中心体比其他.cellular位置来调节不同的,并且在一些蛋白在不同点的细胞周期的中心体水平的变化似乎是中心粒装配的适当调节是至关重要的。我们开发了用于测量在一个蛋白的水平在中心体中固定的细胞来自不同样品的相对变化,在细胞周期的不同阶段,例如,或用各种试剂处理后的定量荧光显微术测定。这个测定的原理在于测量对应于蛋白质在一个小区域的背景校正的荧光强度,和正常化了的测量对相同的对不选择的实验中c而变化的另一蛋白质ondition。利用该测定在用BrdU脉冲和追策略学习未扰动细胞周期的组合,我们已定量具体地说在中心体验证我们最近的观察结果VDAC3的中心体池在细胞周期中被调节在中心体,可能是由蛋白酶体介导的降解。

Introduction

中心体由一对中心粒由pericentriolar材料(PCM)所包围的。为在哺乳动物细胞中主要的微管组织中心(MTOCs),中心体作为有丝分裂纺锤体的两极在分裂的细胞,从而有助于维持基因组完整性1。在静止期细胞( 例如 ,在G0期)时,中心体,即母中心粒的两个中心粒中的一个,被转换成一个基体组装在主纤毛,感官细胞器从细胞表面2突出出来。一旦细胞重新进入细胞周期,原发性纤毛被拆卸并且每个中心粒指挥一个procentriole在其近端逐渐伸长,以形成一个成熟的中心粒3的组装。在S期的开始,一个侧手翻状结构,它提供了9倍对称性的中心粒形成每个现有中心粒的表面上,将成为各procentriole的基础。 SAS6吨帽子是必不可少的中心粒组件被招募来形成手翻4-6的中心。其他中心粒蛋白,然后组装到侧手翻在一个高度管制,近端远端的方式7。经过精确完成中心粒的复制,细胞聚集更多的pericentriolar材料由G2期8月底前建立两个功能中心体。在除了核心部件中心粒9-11,其它几种蛋白质,包括蛋白激酶,磷酸酶,蛋白伴侣,脚手架元件,膜相关蛋白和降解机械与中心粒,基体和PCM在细胞周期12-16的不同的时间相关联。它经常被注意的是,许多蛋白质​​的中心体的水平在时间上由中心体定位的机制和/或蛋白酶体降解在中心体调节。重要的是,在几个蛋白质如PLK4,MPS1,SAS6和CP110 a的中心体水平的波动吨的不同点的细胞周期似乎是至关重要的调节中心粒装配5,17-22,和在MPS1的防止这个中心体的降解的情况下会导致过量中心粒19的形成。另一方面,相对于细胞溶质池几种蛋白质的中心体部分较少不稳定。例如的siRNA介导的下调中金2(Cetn2)导致了在中心粒蛋白水平仅温和下降,尽管大大降低了整个细胞水平的23。因此,关键是要测量在中心体的变化中心体蛋白的水平,而不是评估其中心体特定的功能时,测定全细胞蛋白质的水平。

在这项研究中,我们开发了使用间接免疫荧光(IIF)量化蛋白质在中心体的相对水平的测定法。该测定被显影尤其来分析细胞,来自不同样品因此不能在同一时间被成像。这些样品可以是用不同的试剂( ,药物与对照)中,在不同的时间点收集经处理的细胞( ,脉搏与追),或者是在细胞周期的不同阶段。这个测定的原理在于测量对应于蛋白质在一个小区域和正常化针对同一该值对于另一种蛋白质,其水平所选择的实验条件下不发生变化的背景校正的荧光强度。在中心体生物学几项研究最近使用的各种定量显微技术,在这两种活的或固定细胞,以确定候选蛋白24-27的中心体特定的函数。类似测定法,本发明的技术还可以测量测试蛋白的背景校正的荧光强度。然而,在该测定法使用内标列入正常化将可能提供更多的准确性和信心在分析两种不同的样本是在两个不同的盖玻片。此外,除了在研究中心体蛋白质水平,用小的调整这种方法可以应用到的实验条件多样化或其它细胞位点。

在这里,我们结合定量检测显微镜用的BrdU脉冲追踪策略,比较不同的细胞周期阶段的细胞。代替使用标准的细胞周期停滞和释放技术,研究各种细胞周期的时间点,以异步方式生长的细胞的孵育用BrdU在S期标记细胞,标记的细胞追逐不同​​的时间(通常为4-6小时)。大多数标记的细胞将在脉冲后立即处于S期。追逐的长度被选择为使得追后,标记细胞将在晚S期,G2或有丝分裂,其可以通过形态特征中心体相对于NUC如 – 位置进行验证雷,中心体之间的距离,染色体的缩合因此,追逐的长度取决于为S,G2和特定细胞类型的M期的平均持续时间。由于这种方法避免了细胞周期抑制剂,如羟基脲,阿非迪霉素,诺考达唑 ,其允许更生理学相关细胞周期分析。

因此,我们在这里表明,单独的定量荧光显微术测定中,或在用BrdU脉冲追踪试验组合,是一种简单而功能强大的技术中的未扰动的细胞周期,以精确地测量在候选蛋白质的中心体水平的相对变化。我们测量VDAC3,我们在中心体最近确定除了线粒体16,28的蛋白质的中心体的水平,使用这些测定。在这里所得到的结果验证我们之前的看法,即VDAC3的中心体游泳池被降解调节,也各有不同的细胞周期dependen吨方式16中 ,还证实了该方法的适用性。

Protocol

1.细胞培养使用端粒酶逆转录酶(hTERT)永生视网膜色素上皮细胞(hTERT的-RPE1;这里称为RPE1)。 注:RPE1细胞是那些通常用于研究中心粒装配和ciliogenesis近二倍体,未转化的人细胞。这些细胞遵循正常的中心粒复制周期协调与调控细胞周期。 通道RPE1细胞的近汇合百毫米细胞培养皿以1:5稀释的原始培养物进含有10ml的新鲜100mm皿的DME / F-12(1:1)培养基补充有10%胎牛血清(FBS)?…

Representative Results

我们最近的研究中发现VDAC3,线粒体孔蛋白16,28中的一个新的中心体定位和功能。几种哺乳动物细胞,包括使用VDAC3特异性抗体RPE1细胞的免疫染色表明突出中心体染色和较弱线粒体染色。我们还发现,中心体VDAC3优先与母亲中心粒,而无论是内源性的中心体池关联和异位表达VDAC3被降解16规范。为了验证定量的IIF分析我们检查了在S期的变化,中心体相关VDAC3池中的细胞。 <p class="jo…

Discussion

在细胞生物学定量显微镜通常与活细胞成像试验,如荧光共振能量转移(FRET),荧光恢复漂白相关(FRAP) 等。然而,后有细胞生物学家的例子越来越多开发不同的定量检测显微镜对固定细胞近年来27,34-36。重要的是,了解中心体生物学的进步往往需要的蛋白质,其中心体池可能会受到不同的管制比其他池的中心体特异功能的理解。因此,我们开发了一个定量的IIF分析特异性分析的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a National Institutes of Health grant (GM77311) and a seed grant from The Ohio Cancer Research Associates (to H.A.F.). SM was partially supported by an Up on the Roof fellowship from the Human Cancer Genetics Program of The Ohio State University Comprehensive Cancer Center.

Materials

Name  Company  Catalog number Comments
Fibronectin Sigma F8141 Stock of 1 mg/ml in water
DMSO Sigma D2650
MG115 Sigma SCP0005 Stock of 10 mM in DMSO
BrdU Sigma B5002 Stock of 10 mM in DMSO
Anti-g-tubulin (mouse monoclonal, clone GTU 88) Sigma T 6557 1:200 in IIF blocking buffer 
Anti-VDAC3 (rabbit polyclonal)  Aviva Systems Biology ARP35180-P050 1:50 in IIF blocking buffer, 1:1000 in WB blocking buffer
Anti-Sas6 (mouse monoclonal)  Santa cruz biotechnology sc-81431 1:100 in IIF blocking buffer
Anti-Cep135 (rabbit polyclonal) Abcam ab-75005 1:500 in IIF blocking buffer
Anti-BrdU (rat monoclonal)  Abcam ab6326 1:250 in IIF blocking buffer
Alexa Fluor 350 Goat Anti-Rat IgG (H+L) Life technologies A21093 1:200 in IIF blocking buffer
Alexa Fluor 488 Donkey Anti-Mouse IgG (H+L) Antibody Life technologies A21202 1:1000 in IIF blocking buffer
Alexa Fluor 594 Donkey Anti-Mouse IgG (H+L) Antibody Life technologies A21203 1:1000 in IIF blocking buffer
Alexa Fluor 488 Donkey Anti-Rabbit IgG (H+L) Antibody Life technologies A21206 1:1000 in IIF blocking buffer
Alexa Fluor 594 Donkey Anti-Rabbit IgG (H+L) Antibody Life technologies A21207 1:1000 in IIF blocking buffer
Anti-g-tubulin (rabbit polyclonal) Sigma T5192 1:1000 in WB blocking buffer
Anti-a-tubulin (mouse monoclonal, DM1A) Sigma T9026 1:20000 in WB blocking buffer
Alexa Fluor 680 Donkey Anti-Rabbit IgG (H+L) Life technologies A10043 1:10000 in WB blocking buffer
Mouse IgG (H&L) Antibody IRDye800CW Conjugated Rockland antibodies 610-731-002 1:10000 in WB blocking buffer
SlowFade Gold Antifade Reagent  Life technologies S36936 Mounting media
Round coverslips 12CIR.-1 Fisherbrand 12-545-80
Olympus IX-81 microscope Olympus
Retiga ExiFAST 1394 IR camera QImaging  32-0082B-238
100X Plan Apo oil immersion objective Olympus 1.4 numerical aperture
Slidebook software package Intelligent Imaging Innovations
Odyssey IR Imaging System Li-cor Biosciences
Bicinchoninic acid (BCA) assay Thermo Scientific 23227
U-MNU2 Narrow UV cube Olympus U-M622 Filter
U-MNU2 Narrow Blue cube Olympus U-M643 Filter
U-MNU2 Narrow Green cube Olympus U-M663 Filter

References

  1. Ganem, N. J., Godinho, S. A., Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 460, 278-282 (2009).
  2. Kobayashi, T., Dynlacht, B. D. Regulating the transition from centriole to basal body. J. Cell Biol. 193, 435-444 (2011).
  3. Azimzadeh, J., Marshall, W. F. Building the centriole. Curr. Biol. 20, 816-825 (2010).
  4. Nakazawa, Y., Hiraki, M., Kamiya, R., Hirono, M. SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169-2174 (2007).
  5. Strnad, P., et al. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell. 13, 203-213 (2007).
  6. Hilbert, M., et al. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry. Proc. Natl. Acad. Sci. U.S.A. 110, 11373-11378 (2013).
  7. Pike, A. N., Fisk, H. A. Centriole assembly and the role of Mps1: defensible or dispensable. Cell Div. 6, 9 (2011).
  8. Haren, L., Stearns, T., Luders, J. Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS One. 4, e5976 (2009).
  9. Andersen, J. S., et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 426, 570-574 (2003).
  10. Keller, L. C., Romijn, E. P., Zamora, I., Yates, J. R., Marshall, W. F. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol. 15, 1090-1098 (2005).
  11. Kumar, A., Rajendran, V., Sethumadhavan, R., Purohit, R. CEP proteins: the knights of centrosome dynasty. Protoplasma. 250, 965-983 (2013).
  12. Kanai, M., et al. Physical and functional interaction between mortalin and Mps1 kinase. Genes Cells. 12, 797-810 (2007).
  13. Jakobsen, L., et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. Embo. J. 30, 1520-1535 (2011).
  14. Sang, L., et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 145, 513-528 (2011).
  15. Dowdle, W. E., et al. Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am. J. Hum. Genet. 89, 94-110 (2011).
  16. Majumder, S., Slabodnick, M., Pike, A., Marquardt, J., Fisk, H. A. VDAC3 regulates centriole assembly by targeting Mps1 to centrosomes. Cell Cycle. 11, 3666-3678 (2012).
  17. Guderian, G., Westendorf, J., Uldschmid, A., Nigg, E. A. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J. Cell Sci. 123, 2163-2169 (2010).
  18. Holland, A. J., et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684-2689 (2012).
  19. Kasbek, C., et al. Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol. Biol. Cell. 18, 4457-4469 (2007).
  20. Kasbek, C., Yang, C. H., Fisk, H. A. Antizyme restrains centrosome amplification by regulating the accumulation of Mps1 at centrosomes. Mol. Biol. Cell. 21, 3878-3889 (2010).
  21. Puklowski, A., et al. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nat. Cell Biol. 13, 1004-1009 (2011).
  22. Spektor, A., Tsang, W. Y., Khoo, D., Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell. 130, 678-690 (2007).
  23. Salisbury, J., Suino, K., Busby, R., Springett, M. Centrin-2 is required for centriole duplication in Mammalian cells. Curr. Biol. 12, 1287 (2002).
  24. Lukasiewicz, K. B., et al. Control of centrin stability by Aurora A. PLoS One. 6, e21291 (2011).
  25. Zhao, J., Ren, Y., Jiang, Q., Feng, J. Parkin is recruited to the centrosome in response to inhibition of proteasomes. J. Cell Sci. 116, 4011-4019 (2003).
  26. Korzeniewski, N., et al. Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels. Cancer Res. 69, 6668-6675 (2009).
  27. Rohatgi, R., Milenkovic, L., Corcoran, R. B., Scott, M. P. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc. Natl. Acad. Sci. U.S.A. 106, 3196-3201 (2009).
  28. Majumder, S., Fisk, H. A. VDAC3 and Mps1 negatively regulate ciliogenesis. Cell Cycle. 12, 849-858 (2013).
  29. Howell, B. J., Hoffman, D. B., Fang, G., Murray, A. W., Salmon, E. D. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150, 1233-1250 (2000).
  30. Meraldi, P., Nigg, E. A. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J. Cell Sci. 114, 3749-3757 (2001).
  31. Zimmerman, W. C., Sillibourne, J., Rosa, J., Doxsey, S. J. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell. 15, 3642-3657 (2004).
  32. Lee, K., Rhee, K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093-1101 (2011).
  33. Lin, Y. C., et al. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. Embo. J. 32, 1141-1154 (2013).
  34. Lichtenstein, N., Geiger, B., Kam, Z. Quantitative analysis of cytoskeletal organization by digital fluorescent microscopy. Cytometry A. 54, 8-18 (2003).
  35. Keller, L. C., et al. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol. Biol. Cell. 20, 1150-1166 (2009).
  36. Venoux, M., et al. Poc1A and Poc1B act together in human cells to ensure centriole integrity. J. Cell Sci. 126, 163-175 (2013).
  37. Stevens, N. R., Roque, H., Raff, J. W. DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement. Dev. Cell. 19, 913-919 (2010).
  38. Machiels, B. M., et al. Detailed analysis of cell cycle kinetics upon proteasome inhibition. Cytometry. 28, 243-252 (1997).
  39. Yang, C. H., Kasbek, C., Majumder, S., Yusof, A. M., Fisk, H. A. Mps1 phosphorylation sites regulate the function of centrin 2 in centriole assembly. Mol. Biol. Cell. 21, 4361-4372 (2010).
  40. Tsou, M. F., et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell. 17, 344-354 (2009).
  41. Salic, A., Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. U.S.A. 105, 2415-2420 (2008).
  42. Buck, S. B., et al. Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. Biotechniques. 44, 927-929 (2008).
  43. Waters, J. C. Accuracy and precision in quantitative fluorescence microscopy. J. Cell Biol. 185, 1135-1148 (2009).
check_url/kr/52030?article_type=t

Play Video

Cite This Article
Majumder, S., Fisk, H. A. Quantitative Immunofluorescence Assay to Measure the Variation in Protein Levels at Centrosomes. J. Vis. Exp. (94), e52030, doi:10.3791/52030 (2014).

View Video