Summary

设计和适体 - 金纳米粒子基于比色法的开发在这领域的应用

Published: June 23, 2016
doi:

Summary

进行了检查适体,纳米金比色法检测小分子在得到了实地应用的设计与开发。此外,一个智能设备色度应用(应用程序)的验证,并建立了在该领域使用的测定法的长期贮存。

Abstract

进行了检查适体 – 金纳米粒子(金纳米粒子)比色法检测小分子中的非现场应用的设计与开发。基于目标的选择性金纳米粒子的颜色检测已经发展证明了概念控制的实验室设置。然而,这些方案没有被施加到故障点,以确定其超出实验室设置实际使用。这部作品描述了一个通用的方法来设计,开发和故障排除为小分子分析物和使用试验中,该场设置的适体 – 金纳米粒子比色测定。该测定是有利的,因为吸附适体钝化纳米颗粒表面并提供减少和消除对非靶分析物的假阳性反应的手段。转换该系统的实际应用所需的限定不仅适体 – 金纳米粒子测定的保质期,但是建立延伸长期存储capabil方法和程序伊蒂埃斯。此外,与比色读出公认的问题之一是放置于分析师准确识别颜色往往微妙变化的负担。以减少在现场上分析的责任,颜色分析协议设计为无需进行实验室级装备该任务执行的颜色标识的职责。描述了用于创建和测试数据分析的协议的方法。然而,为了理解和影响吸附的适配体测定法的设计中,与适体,目标相关联的交互,以及金纳米粒子需要进一步研究。所获得的知识可能导致剪裁适体的改进的功能。

Introduction

比色法是在分析化学中使用的最古老的技术之一。对于这种技术,分析物的定性或定量测定由根据生产的有色化合物1。通常情况下,颜色测定法使用体验中的分析物质的存在,这将导致在可见光光谱中观察到的或检测的颜色变化的色移的试剂。比色法已在检测的目标,从原子,离子和小分子到复杂的生物分子,如脱氧核糖核酸(DNA)的肽,和蛋白质2-4这样被使用。在过去的二十年中,纳米材料已经彻底改变了检测分析的领域中,特别是与基于颜色测定5-6。与靶选择性识别元件结合纳米材料的独特的化学和物理性质,例如抗体,寡核苷酸适体或肽适体,导致了再起我n中的设计和比色检测试验7的发展。

金属纳米颗粒具有一个证实大小相关的色彩变化特性,这已在许多比色测定法的设计被利用。金粒子(AuNPs)是特别感兴趣的,由于独特的红至蓝色移,当粒子的分散液被诱导聚合8,典型地通过精确的加成盐。控制从分散(红色)过渡到聚集的(蓝色)状态的能力已经导致建立比色传感器,用于离子,小分子,肽,蛋白质和细胞靶2-4,9的。许多这些传感器采用适体作为目标识别基序。

适体是由10 12 -10 15个不同序列10-11的无规池选择的DNA或核糖核酸(RNA)分子。选择过程确定的目标重新认知元件在低纳摩尔政权结合亲和性,并通过指数富集(SELEX) ​​的配体的系统进化是最公知的过程12-13。基于寡核苷酸适体用于感测应用的优点包括易于合成的,可控的化学修饰,和化学稳定性14-15。

一种方法来创建一个比色测定结合纳米材料与识别元件,包括通过DNA适配子分子金纳米粒子表面的物理吸附这两个物种结合。通过目标核酸适体结合,适体经受能改变与金纳米粒子表面,从而导致与加成盐的可诱导的红至蓝颜色响应19中的适体的相互作用的结构变化16-18。金纳米粒子的这一惊人的特性提供了一种可观察到的比色反应的机制,可用于脱基于适体的设备签署不同的分析物比色法。

使用上金纳米粒子表面的非共价键,物理吸附的DNA核酸适体设计的彩色测定有被微弱的传感器平台的耻辱由于与稳健性,对未受控实验室环境以外的倾向,以及可用于实际应用的信息缺乏问题设置。然而,基于适体的金纳米粒子比色法是因为操作和观察到的色彩响应的简单的兴趣。这项工作的目的是提供一种用于设计,开发,操作,减少表面的相关的假阳性反应,和长期存储用可卡因为代表分析物DNA的金纳米粒子基于比色测定法提供的协议。此外,我们提出了本吸附适配体测定方法( 图1)为是有利的,由于使用的简单和易用性,导致比这些适体-金纳米粒子屁股常规方法更少的步骤AYS。对于这个测定法中,适体首先​​被加入到纳米金,这被允许吸附到表面的时间较长。一个附加的优点,以这种方法是响应于与金纳米粒子表面的相互作用的非目标分析物分子的减少。然而,在假阳性反应的减少是在测定灵敏度为代价的。因此,表面保护和辅助分析物之间的平衡是必要保持适当的检测功能。此外,通过对色彩分析的一个重大缺陷是​​指除与仪器是结果往往是主观的和分析师对分析师公开的解释,试图区分颜色的细微差别时尤为如此。反之,有许多与使得基于实验室可用的仪器在实验室外,如电源的可用性,实用性与便携性, 等。在此工作的问题,一个色分析协议是为MOR开发Ë便携性并消除一些通常与基础色法20-21解释相关的猜测。相比于以前的方法,这一努力争取到这些分析推到他们的实验室之外设置的应用程序的限制。

Protocol

1.通过金纳米粒子柠檬酸还原(金纳米粒子)与表征合成清洁的Erlenmeyer烧瓶(500ml)中和大型搅拌棒用5毫升浓硝酸和15毫升浓缩的化学安全罩盐酸。 湿用酸洗涤烧瓶的整个表面,冲洗用不含核酸酶的水的烧瓶中,并允许烧瓶干燥。 加入100毫升1mM的金(III),氯化;使用铝箔的片材,以覆盖酸清洗Erlenmeyer烧瓶和加热连续搅拌的顶部的热板上直到沸腾。 加入10 mL 38.8…

Representative Results

这项工作的主要目标是开发和研究基于金纳米粒子比色分析在现场使用的稳定性和适体的稳健性。如在先前的出版物强调,用于创建该测定两种不同的策略进行了调查7。该测定法被称为自由适配体测定和吸附适配体测定。的吸附适配体测定是一个fieldable检测测定( 图1)的目的更吸引人。 <img alt="图1" src="/files/ftp_upload/54063/5406…

Discussion

在过去十年中,基于纳米颗粒的比色测 ​​定法已被用于检测的目标开发包括小分子,DNA,蛋白质和细胞2-4。使用DNA适体纳米粒子实验已获得的利益。通常,这些比色测 ​​定法是通过将DNA的适体与分析物分子,随后加入到纳米金9-10进行。但是,这些测定法已经用于证明的概念展示具有受控的实验室设置,以有限的,所选择的控制。最新进展过渡这项技术进入该领域已经进行了…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was partially funded by the Air Force Office of Scientific Research and the Assistant Secretary of Defense for Research and Engineering (Defense Biometrics and Forensics Office). JES participation was supported by a National Research Council Research Associateship Award at Air Force Research Laboratory.

Materials

Gold(III) chloride hydrate Sigma 254169 99.999% purity is important and solutions were made fresh every time
Sodium Citrate Dihydrate Sigma W302600-1KG-K We have found the manufacturer greatly affects AuNP assays, and solutions were made fresh every time
Synergy Bio-TEK HT Any absorbance spectrometer will work, but a platereader provides multiple sample analysis
4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) Buffer, 1 M sterilized Amresco J848 Any sterilized brand will work
Corning, 250 mL Filter System, 0.22 µm cellulose acetate Fisher 430767 Other membranes have been found to remove the AuNPs
UV Spectrophophotometer Varian Cary 300  Any absorbance spectrometer will work
Magnesium Chloride Hexahydrate Fluka 63068 ≥98% any brand will work
DNA IDT Custom DNA was purified with a desalting column, higher purification techniques can be used
Procaine Hydrochloride ACROS AC20731-1000 99% stocks of 1 mg/mL in methanol were prepared
Hydrochloric Acid Fisher A144S-500 36.5-38.0% w/w other brands will work
Cocaine Hydrochloride Lipomed COC-156-HC-1LM We have found the manufacturer greatly affects AuNP assays
Nitric Acid Fisher A509-SK212 65% w/w other brands will work
Sodium Chloride Solution, 5 M bioreagent grade Sigma S5150-1L Sterile solutions made from solid will work
Diethyl Pyrocarbonate Sigma D5758-25 mL ≥97% any brand will work
Ecgoninemethylester Hydrochloride Lipomed COC-205-HC-1LM We obtained the EME control from the same manufacturer as the cocaine target
Microcentrifuge Tubes, Axygen Scientific, nonsterile, 1.7mL VWR 10011-722 We have found the manufacturer greatly affects AuNP assays, and the tubes were autoclaved in house
nuclease free water
methanol

References

  1. Housecroft, C., Constable, E. . Chemistry: an introduction to organic, inorganic, and physical chemistry. , 349-353 (2006).
  2. Bunka, D., Stockley, P. Aptamers come of age-at last. Nat. Rev. Microbiol. 4 (8), 588-596 (2006).
  3. Mayer, G. The chemical biology of aptamers. Angew. Chem. 48 (15), 2672-2689 (2009).
  4. Medley, C., Smith, J., Tang, Z., Wu, Y., Bamrungsap, S., Tan, W. Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells. Anal. Chem. 80 (4), 1067-1072 (2008).
  5. Giljohann, D., Seferos, D., Daniel, W., Massich, M., Patel, P., Mirkin, C. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49 (19), 3280-3294 (2010).
  6. Iliuk, A., Hu, L., Tao, W. Aptamer in bioanalytical applications. Anal. Chem. 83 (12), 4440-4452 (2011).
  7. Smith, J., Griffin, D., Leny, J., Hagen, J., Chávez, J., Kelley-Loughnane, N. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta. 121, 247-255 (2014).
  8. Alivasatos, A., et al. Organization of nanocrustal molecules using DNA. Nature. 382, 609-611 (1996).
  9. Wang, L., Liu, X., Song, S., Fan, C. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun. (36), 3780-3782 (2006).
  10. Liu, J., Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. 118 (1), 96-100 (2006).
  11. Pavlov, V., Xiao, Y., Shlyahovsky, B., Willner, I. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc. 126 (38), 11768-11769 (2004).
  12. Mayer, G. The chemical biology of aptamers. Angew. Chem. Int. Ed. 48 (15), 2672-2689 (2009).
  13. Hermann, T., Patel, D. Adaptive recognition by nucleic acid aptamers. Science. 287 (5454), 820-825 (2000).
  14. Lee, J., Stovall, G., Ellington, A. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10 (3), 282-289 (2006).
  15. Song, S., Wang, L., Li, J., Zhao, J., Fan, C. Aptamer-based biosensors. TrAC. 27 (2), 108-117 (2008).
  16. Wei, H., Li, B., Wang, E., Dong, S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticles. Chem. Commun. (36), 3735-3737 (2007).
  17. Zheng, Y., Wang, Y., Yang, X. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors and Actuators B. 156 (1), 95-99 (2011).
  18. Chávez, J., MacCuspie, R., Stone, M., Kelley-Loughnane, N. Colorimetric detection with aptamer-gold nanoparticle conjugates: effect of aptamer length on response. J. Nanopart. Res. 14 (10), 1-11 (2012).
  19. Neves, M., Reinstein, O., Johnson, P. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study. 생화학. 49 (39), 8478-8487 (2010).
  20. Li, H., Rothberg, L. Label-Free Colorimetric Detection of Specific Sequences in Genomic DNA Amplified by the Polymerase Chain Reaction. J. Am. Chem. Soc. 126 (35), 10958-10961 (2004).
  21. Li, H., Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. 101 (39), 14036-14039 (2004).
  22. Smith, J., Medley, C., Tang, Z., Shangguan, D., Lofton, C., Tan, W. Aptamer-Conjugated Nanoparticle for the Collection and Detection of Multiple Cancer Cells. Anal. Chem. 79 (8), 3075-3082 (2007).
  23. Martin, J., Chávez, J., Chushak, Y., Chapleau, R., Hagen, J., Kelley-Loughnane, N. Tunable stringency aptamer selection and gold nanoparticle assay for detection of cortisol. Anal. Bioanal. Chem. 406 (19), 4637-4647 (2014).
  24. Shen, L., Hagen, J., Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab on a Chip. 12 (21), 4240-4243 (2012).
  25. Choodum, A., Kanatharana, P., Wongniramaikul, W., NicDaeid, N. Rapid quantitative colourimetric tests for trinitrotoluene (TNT) in soil. Forensic. Sci. Int. 222 (1), 340-345 (2012).
check_url/kr/54063?article_type=t

Play Video

Cite This Article
Smith, J. E., Chávez, J. L., Hagen, J. A., Kelley-Loughnane, N. Design and Development of Aptamer–Gold Nanoparticle Based Colorimetric Assays for In-the-field Applications. J. Vis. Exp. (112), e54063, doi:10.3791/54063 (2016).

View Video