Summary

Трехмерный (3D)-напечатан шаблон для высокой пропускной способности Zebrafish эмбриона одевающ

Published: June 01, 2018
doi:

Summary

Здесь мы представляем протокол для проектирования и изготовления zebrafish эмбриона, одевающ шаблон, следуют подробные процедуры на использование такой шаблон для высокой пропускной способности zebrafish эмбриона одевающ в 96-луночных плиту.

Abstract

Данио рерио является глобально признанных пресной воды организм часто используются в биологии развития, экологической токсикологии и болезней человека соответствующих исследований. Благодаря его уникальными особенностями, включая большие плодовитость, прозрачность эмбрионов, быстрое и одновременное развитие, и т.д.данио рерио эмбрионы часто используются для больших масштабах оценки токсичности химических веществ и наркотиков/соединение скрининга. Типичная скрининг процедура включает нереста взрослых рыбок данио, отбор эмбрионов и одевающ эмбрионов в несколько хорошо пластины. От там эмбрионы подвергаются воздействия и токсичности химических, или эффективность препаратов/соединений может оцениваться относительно быстро основаны на фенотипическую наблюдений. Среди этих процессов одевающ эмбрионов является одним из самых длительных и трудоемких шагов, которые ограничивает уровень пропускной способности. В этом протоколе мы представляем новаторский подход, который делает использование шаблона выстраивающихся 3D-печать Наряду с вакуумной манипуляции, чтобы ускорить этот трудоемкий этап. Протокол в настоящем документе описывается общий дизайн выстраивающихся шаблон, подробный экспериментальной установки и шаг за шагом процедуры, после чего представитель результаты. При реализации, этот подход должен оказаться полезным в различных исследовательских приложений с помощью zebrafish эмбриона как тестирование субъектов.

Introduction

Как организм популярная модель данио рерио широко используется в области медицины и токсикологии1,2,3,4. По сравнению с платформами в пробирке , данио рерио предлагают гораздо большей биологической сложности, что один или два типа клеток не может предложить. Помимо того, что весь организм, модель, данио рерио большая плодовитость, быстрых и одновременных эмбрионального развития и высокий орган полупрозрачность дали уникальные преимущества этой модели использоваться для больших масштабах токсичности или наркотиков/соединение скрининг5. Сотни зародышей одна пара взрослых рыбок данио каждую неделю превосходят любой другой весь Животные модели и сделали это подходит для высокой пропускной способности скрининга.

Типичная скрининг процедура, с помощью данио рерио включает в себя значительное количество ручной работы, такие как взрослых рыбок данио нереста, отбор эмбрионов и одевающ эмбрионов в соответствующих емкостях, где они подвергаются воздействию путем погружения в воду. Мониторинг развития эмбрионов и наблюдаемых конечные точки как смертность, выводимости и аномалий часто оцениваются вручную и используется в качестве предварительных опознавательные токсичность химических веществ или признаки эффективности наркотиков или соединений. Чтобы ускорить процедуру проверки, были изучены ранее подходов, таких как автоматическое создание образов и анализа компьютерных изображений. К примеру Микроскопы с высоким содержанием изображений возможности были адаптированы для выполнения автоматизированных ярко поле или флуоресценции изображений на zebrafish эмбриона на различных этапах своего развития от 96/384 хорошо пластины6. Microfluidic приборы, в сочетании с Микроскопы были использованы для позиции данио рерио личинок через текущую манипуляцию нейронов мозга7для воображения. Эти подходы могли бы значительно повысить эффективность поглощения изображения по сравнению с традиционной ручной работы. Кроме того с большим количеством изображений создаются, инструменты анализа изображений также были разработаны для ускорения обработки данных, как это продемонстрировано Лю et al. и ту et al. 8 , 9.

Как уровень пропускной способности анализа изображений и изображения увеличивается, стало ясно, что тариф ограничивая шаг для отбора лежит в процессе подготовки zebrafish эмбриона для экспозиции, который обычно означает, одевающ их в 96 – или 384-ну пластины. Чтобы решить это узкое место, видение руководствуясь робототехника были разработаны Мандрелл et al. 10 и нас11 ранее, чтобы заменить ручной обработки, но инструменты были довольно сложные и есть глубокий кривой обучения для осуществления таких методов. Таким образом чтобы обеспечить легкий к употребление подход становится одним из важных факторов для дальнейшего улучшения уровень пропускной способности данио рерио скрининга и является главной целью этой работы.

В этой работе мы разработаны и изготовлены эмбриона, одевающ шаблон 3D печати. Такой шаблон выстраивающихся был разработан чтобы завлечь zebrafish эмбриона в скважины, которые подходят с стандартных 96-луночных пластины. Вместо выбора эмбрионов и одевающ их в отдельные хорошо один за другим, один может выполнить эмбриона изобличения и массив все 96 эмбрионов в многослойные пластины одновременно. Используя этот шаблон и следующий протокол, одно может значительно повысить эффективность одевающ эмбрионов в многослойные пластины, которые бы в срок увеличить потенциал скрининга по крайней мере в десять раз, по сравнению с ручной работы. Протокол, в описанный ниже включает в себя общий дизайн для одевающ шаблон, данио рерио нереста, коллекции эмбриона и одевающ. Рисунок 1 показывает общий дизайн выстраивающихся шаблона. Рисунок 2 показывает обзор протокола пошаговую инструкцию по использованию шаблона, описанные в частях 3 и 4.

Protocol

1. Проектирование и изготовление Zebrafish эмбриона одевающ шаблон Дизайн выстраивающихся шаблон с 12 на 8, 96-луночных макет, который подходит для стандартных 96-луночных пластины. Использование измерения, перечисленных на рисунке 1A для камеры захвата верхней эмбрио…

Representative Results

Рисунок 3 показывает типичный шаблон выстраивающихся 3D-печати. Этот шаблон использует фоточувствительный смолы в качестве сырья и был сделан на 3D принтере; слой черной краской был применен для обеспечения лучшей контрастности цвета эмбрионов. Положен…

Discussion

Есть два критических шагов в настоящем Протоколе, которые требуют пристального внимания для успешной реализации 3D-печати шаблон для одевающ zebrafish эмбриона.

Наиболее важным фактором в разработке выстраивающихся шаблон является хорошо захвата. Делает уверен Есть только ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана программа «1000plan молодежи», запуска средства от Университета Тунцзи и NSFC Грант # 21607115 и 21777116 (Лин).

Materials

Zebrafish Facility Shanghai Haisheng Biotech Co., Ltd. Z-A-S5
Mating box Shanghai Haisheng Biotech Co., Ltd.
Wash Bottle, 500 ml Sangon Biotech F505001-0001
Sodium chloride Vetec V900058-500G
Potassium Chloride Sinopharm Chemical Reagent Co.,Ltd 10016318
Calcium chloride Sinopharm Chemical Reagent Co.,Ltd 20011160
Sodium bicarbonate  Vetec v900182-500G
Methylene Blue Hydrate TCI M0501
Hydrochloric acid Sinopharm Chemical Reagent Co.,Ltd 10011008
Sea Salts Instant Ocean SS15-10
Pipetter Fisherbrand 13-675M
Controlled Drop Pasteur Pipet Fisherbrand 13-678-30
Microscope OLYMPUS SZ61
Biochemical incubator Shanghai Yiheng Scientific Instrument Co., Ltd. LRH-250
3D printer UnionTech Lite600
Photosensitive resin UnionTech UTR9000
Vacuum pump Shanghai Yukang Scientific Instrument Co., Ltd. SHB-IIIA
Adhesive PCR Plate Seals Solarbio YA0245
96 well plate Costar 3599
Multi 8-channel pipette 30 – 300 μl Eppendorf 3122000.051
Compressed Gas Duster Shanghai Zhantu Chemical Co., Ltd. ST1005
DI Water Thermo GenPure Pro UV/UF
Drying oven Shanghai Yiheng Scientific Instrument Co., Ltd. BPG-9106A
System water Water out of the facility’s water system
Egg water Dilute 60mg “Instant Ocean” sea salts and 0.25 mg/L methylene blue in 1 L DI water
Holtfreter’s solution Dissolve 7.0 g Sodium chloride (NaCl), 0.4 g Sodium bicarbonate (NaHCO3), 0.1 g Potassium Chloride (KCl), 0.235 g Calcium chloride (CaCl2.2H2O) in 1.9 L DI water. Adjust pH to 7 using HCl and adjust volume to 2 L using Di water

References

  1. Howe, K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496 (7446), 498-503 (2013).
  2. Leslie, M. Zebrafish larvae could help to personalize cancer treatments. Science. 357 (6353), 745-745 (2017).
  3. Lin, S., et al. Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent. ACS Nano. 9 (2), 2038-2048 (2015).
  4. Lin, S., et al. Aspect ratio plays a role in the hazard potential of ceo2 nanoparticles in mouse lung and zebrafish gastrointestinal tract. ACS Nano. 8 (5), 4450-4464 (2014).
  5. Baraban, S. C., Dinday, M. T., Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nature Communications. 4, (2013).
  6. Lin, S., et al. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano. 5 (9), 7284-7295 (2011).
  7. Kuipers, J., Kalicharan, R. D., Wolters, A. H. G., van Ham, T. J., Giepmans, B. N. G. Large-scale Scanning Transmission electron microscopy (nanotomy) of healthy and injured zebrafish brain. Journal of Visualized Experiments. (111), (2016).
  8. Liu, R., et al. Automated Phenotype Recognition for Zebrafish Embryo Based In vivo High Throughput Toxicity Screening of Engineered Nano-Materials. PLoS One. 7 (4), (2012).
  9. Tu, X., et al. Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules. in CT Images with Convolutional Neural Network. Scientific Reports. 7, 8533 (2017).
  10. Mandrell, D., et al. Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. Journal of Laboratory Automation. 17 (1), 66-74 (2012).
  11. Lin, S., Zhao, Y., Nel, A. E., Lin, S. Zebrafish: An in vivo model for nano EHS studies. Small. 9 (9-10), 1608-1618 (2013).

Play Video

Cite This Article
Yu, T., Jiang, Y., Lin, S. A 3-dimensional (3D)-printed Template for High Throughput Zebrafish Embryo Arraying. J. Vis. Exp. (136), e57892, doi:10.3791/57892 (2018).

View Video