Summary

سير العمل البروتيومي الكمي باستخدام رصد التفاعل المتعدد القائم على الكشف عن البروتينات من أنسجة الدماغ البشري

Published: August 28, 2021
doi:

Summary

يهدف البروتوكول إلى إدخال استخدام مطياف كتلة رباعي القطب ثلاثي لرصد التفاعل المتعدد (MRM) من البروتينات من العينات السريرية. لقد قدمنا سير عمل منهجي بدءا من إعداد العينات إلى تحليل البيانات للعينات السريرية مع جميع الاحتياطات اللازمة التي يتعين اتخاذها.

Abstract

التحليل البروتيوميكي لأنسجة الدماغ البشري على مدى العقد الماضي قد عزز بشكل كبير فهمنا للدماغ. ومع ذلك، لا تزال الاضطرابات المرتبطة بالدماغ مساهما رئيسيا في الوفيات في جميع أنحاء العالم، مما يستلزم الحاجة إلى فهم أكبر لعلم الأحياء المرضية. التقنيات التقليدية القائمة على الأجسام المضادة مثل النشاف الغربي أو الكيمياء المناعية تعاني من انخفاض الإنتاجية إلى جانب كونها كثيفة العمالة ونوعية أو شبه كمية. حتى النهج التقليدية بندقية الكتلة القائمة على الطيف تفشل في تقديم أدلة قاطعة لدعم فرضية معينة. نهج البروتيوميات المستهدفة هي إلى حد كبير فرضية مدفوعة وتختلف عن النهج التقليدية بروتيوميات البندقية التي كانت طويلة في الاستخدام. رصد رد الفعل المتعدد هو أحد هذه النهج المستهدف الذي يتطلب استخدام مطياف كتلة خاص يسمى مطياف الكتلة الرباعية الترادفية أو مطياف الكتلة الرباعي الثلاثي. في الدراسة الحالية، سلطنا الضوء بشكل منهجي على الخطوات الرئيسية التي ينطوي عليها تنفيذ سير عمل البروتيوميات الكتلي الترادفي الناجح القائم على قياس الطيف باستخدام أنسجة الدماغ البشري بهدف إدخال سير العمل هذا إلى مجتمع بحثي أوسع.

Introduction

خلال العقد الماضي، ساعدت التطورات السريعة في قياس الطيف الكتلي (MS) إلى جانب زيادة فهم تقنيات الكروماتوغرافيا بشكل كبير في النهوض بالبروتيوميات القائمة على التصلب المتعدد. لطالما عانت التقنيات الجزيئية القائمة على البيولوجيا مثل النشاف الغربي والكيمياء المناعية من مشكلات الاستنساخ ، وبطء وقت التحول ، والتباين بين المراقبين وعدم قدرتها على تحديد البروتينات بدقة ، على سبيل المثال لا الحصر. وتحقيقا لهذه الغاية، فإن الحساسية الفائقة لنهج البروتيوميات عالية الإنتاجية لا تزال توفر لعلماء الأحياء الجزيئية أداة بديلة وأكثر موثوقية في سعيهم لفهم أفضل لأدوار البروتينات في الخلايا. ومع ذلك ، فإن نهج بروتيوميات البنادق (اكتساب البيانات المعتمدة أو DDA) غالبا ما تفشل في اكتشاف البروتينات المنخفضة الوفيرة في الأنسجة المعقدة إلى جانب كونها تعتمد بشكل كبير على حساسية ودقة الأداة. على مدى العامين الماضيين ، وقد تم تطوير مختبرات في جميع أنحاء العالم تقنيات مثل الحصول على البيانات المستقلة (DIA) التي تتطلب زيادة القدرة الحاسوبية والبرمجيات الموثوقة التي يمكن التعامل مع هذه مجموعات البيانات المعقدة للغاية. ومع ذلك، هذه التقنيات لا تزال العمل في التقدم وليس سهل الاستعمال جدا. توفر نهج البروتيوميات المستهدفة القائمة على التصلب المتعدد توازنا مثاليا بين الطبيعة العالية الإنتاجية لنهج التصلب المتعدد وحساسية نهج البيولوجيا الجزيئية مثل ELISA. تركز تجربة البروتيوميات الشاملة المستهدفة المستندة إلى قياس الطيف على اكتشاف البروتينات أو الببتيدات التي تحركها الفرضية من تجارب البروتيوميات القائمة على الاكتشاف أو من خلال الأدب المتاح1،2. رصد التفاعل المتعدد (MRM) هو واحد من هذه النهج التصلب المتعدد المستهدفة التي تستخدم مطياف كتلة رباعية جنبا إلى جنب للكشف الدقيق والتحديد الكمي للبروتينات / الببتيدات من عينات معقدة. توفر هذه التقنية حساسية وخصوصية أعلى على الرغم من أنها تتطلب استخدام أداة منخفضة الدقة.

يتكون رباعي القطب من 4 قضبان متوازية ، مع توصيل كل قضيب بالقضيب المعاكس قطريا. يتم إنشاء حقل متقلب بين قضبان quadrupole عن طريق تطبيق RF بالتناوب والجهد DC. يتأثر مسار الأيونات داخل الكوادروبول بوجود نفس الفولتية عبر قضبان مقابلة. من خلال تطبيق RF على الجهد DC، يمكن تثبيت مسار الأيونات. هذه الخاصية من quadrupole التي تسمح لاستخدامها كمرشح الشامل الذي يمكن أن تسمح انتقائي الأيونات محددة لتمرير من خلال. اعتمادا على الحاجة، يمكن تشغيل رباعي في وضع ثابت أو وضع المسح الضوئي. يسمح الوضع الثابت فقط لأيونات ذات m/z محددة بالمرور ، مما يجعل الوضع انتقائيا للغاية ومحددا لأيون الاهتمام. من ناحية أخرى، يسمح وضع المسح الضوئي لليونات عبر نطاق m/z بأكمله بالمرور. وهكذا، يمكن أن تعمل مطيافات الكتلة الرباعية الترادفية في 4 طرق ممكنة: 1) أول رباعي يعمل في الوضع الثابت بينما يعمل الثاني في وضع المسح الضوئي؛ و(ب) الأعمدة الرباعية الأولى التي تعمل في الوضع الساكن بينما تعمل الثانية في وضع المسح الضوئي؛ و(ب) الأعمدة الرباعية المطيافية للكتلة. ii) رباعية الأولى تعمل في وضع المسح الضوئي في حين أن التشغيل الثاني في وضع ثابت؛ 3) كل من quadrupoles تعمل في وضع المسح الضوئي؛ و4) كل من quadrupoles تعمل في وضع ثابت3. وفي تجربة نموذجية لMM، تعمل الأعمدة الرباعية في الوضع الساكن مما يسمح برصد سلائف محددة ومنتجاتها الناتجة بعد التجزؤ. وهذا يجعل هذه التقنية حساسة جدا وانتقائية مما يسمح للقياس الكمي الدقيق.

بالنسبة لعلماء الأحياء الجزيئية، فإن أنسجة الدماغ البشرية وخلاياها هي كنز. هذه الوحدات الرائعة من جهاز مثير للاهتمام من أي وقت مضى من جسم الإنسان يمكن أن توفر رؤى الجزيئية والخلوية في أدائها. يمكن التحقيقات Proteomic من أنسجة الدماغ لا تساعدنا فقط على فهم الأداء الجهازي للدماغ السليم ولكن أيضا المسارات الخلوية التي تحصل على dysregulated عندما تسببها بعض الأمراض4. ومع ذلك ، فإن أنسجة الدماغ مع كل عدم التجانس هو جهاز معقد جدا لتحليل ويتطلب نهجا منسقا لفهم أفضل للتغيرات على المستوى الجزيئي. يصف العمل التالي سير العمل بأكمله بدءا من استخراج البروتينات من أنسجة الدماغ ، وإنشاء وتحسين طرق فحص MRM ، إلى التحقق من الأهداف(الشكل 1). هنا، سلطنا الضوء بشكل منهجي على الخطوات الرئيسية المشاركة في تجربة ناجحة على أساس MRM باستخدام أنسجة الدماغ البشري بهدف إدخال هذه التقنية وتحدياتها إلى مجتمع بحثي أوسع.

Protocol

تتضمن هذه الدراسة عينات من أنسجة الدماغ من المشاركين البشريين، تمت مراجعتها والموافقة عليها من قبل TMH وIITB IEC – (IITB-IEC/2018/019). وقدم المشاركون موافقتهم المستنيرة والمكتوبة على المشاركة في هذه الدراسة. 1 استخراج البروتين من أنسجة الدماغ تزن حوالي 50 ملغ من أنسجة الدماغ وغسل ال…

Representative Results

قمنا بإجراء تقدير كمي نسبي ل 3 بروتينات من 10 عينات، 5 عينات من كل مجموعة من المرضى الذين يعانون من تشوهات في الدماغ. وشملت هذه البروتينات Apolipoprotein A-I (APOA-I), فيمينتين (VIM) ونيكوتيناميد فوسفوريبوسيل ترانسفيراز (NAMPT) التي من المعروف أن أداء أدوار متنوعة في خلايا الدماغ. تم إجراء تحليل البيانات بعد ?…

Discussion

واعتبرت تقنيات مثل الكيمياء المناعية والنشاف الغربية كالمعايير الذهبية للتحقق من صحة أهداف البروتين لسنوات عديدة. هذه الأساليب تجد استخدام حتى اليوم مع تعديلات طفيفة في البروتوكول والاعتماد قليلا على التكنولوجيا مما يجعلها مرهقة جدا ومملة. وإلى جانب ذلك، فإنها تنطوي أيضا على استخدام ا?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

نعترف بمشروع MHRD-UAY (UCHHATAR AVISHKAR YOJANA)، #34_IITB المشروع إلى مرفق SS و MASSFIITB في IIT Bombay بدعم من إدارة التكنولوجيا الحيوية (BT/PR13114/INF/22/206/2015) لإجراء جميع التجارب المتعلقة بالتصلب المتعدد.

ونعرب عن شكرنا الخاص للسيد ريشابه ياداف على إنتاج وتحرير الفيديو بأكمله والسيد نيشانت نيروكار على عمله في تحرير الصوت.

Materials

Reagents
Acetonitrile (MS grade) Fisher Scientific A/0620/21
Bovine Serum Albumin HiMedia TC194-25G
Calcium chloride Fischer Scienific BP510-500
Formic acid (MS grade) Fisher Scientific 147930250
Iodoacetamide Sigma 1149-25G
Isopropanol (MS grade) Fisher Scientific Q13827
Magnesium Chloride Fischer Scienific BP214-500
Methanol (MS grade) Fisher Scientific A456-4
MS grade water Pierce 51140
Phosphate Buffer Saline HiMedia TL1006-500ML
Protease inhibitor cocktail Roche Diagnostics 11873580001
Sodium Chloride Merck DF6D661300
TCEP Sigma 646547
Tris Base Merck 648310
Trypsin (MS grade) Pierce 90058
Urea Merck MB1D691237
Supplies
Hypersil Gold C18 column Thermo 25002-102130
Micropipettes Gilson F167380
Stage tips MilliPore ZTC18M008
Zirconia/Silica beads BioSpec products 11079110z
Equipment
Bead beater (Homogeniser) Bertin Minilys P000673-MLYS0-A
Microplate reader (spectrophotometer) Thermo MultiSkan Go
pH meter Eutech CyberScan pH 510
Probe Sonicator Sonics Materials, Inc VCX 130
Shaking Drybath Thermo 88880028
TSQ Altis mass spectrometer Thermo TSQ02-10002
uHPLC – Vanquish Thermo VQF01-20001
Vacuum concentrator Thermo Savant ISS 110

References

  1. Picotti, P., Aebersold, R. Selected reaction monitoring-based proteomics: Workflows, potential, pitfalls and future directions. Nature Methods. , (2012).
  2. Carr, S. A., et al. Targeted peptide measurements in biology and medicine: Best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Molecular and Cellular Proteomics. 13 (3), 907-917 (2014).
  3. Pitt, J. J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. The Clinical biochemist Reviews. 30 (1), 19-34 (2009).
  4. Hosp, F., Mann, M. A Primer on Concepts and Applications of Proteomics in Neuroscience. Neuron. 96 (3), 558-571 (2017).
  5. Scopes, R. K. Measurement of protein by spectrophotometry at 205 nm. Analytical Biochemistry. , (1974).
  6. Kusebauch, U., et al. Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome. Cell. , (2016).
  7. MacLean, B., et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 26 (7), 966-968 (2010).
  8. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences of the United States of America. , (2003).
  9. Escher, C., et al. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics. , (2012).
  10. Gillette, M. A., Carr, S. A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nature Methods. 10 (1), 28-34 (2013).
  11. Whiteaker, J. R., et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nature Biotechnology. , (2011).
  12. Hüttenhain, R., et al. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Science Translational Medicine. 4 (142), 94 (2012).
  13. Mermelekas, G., Vlahou, A., Zoidakis, J. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Review of Molecular Diagnostics. 15 (11), 1441-1454 (2015).
  14. Koldamova, R. P., Lefterov, I. M., Lefterova, M. I., Lazo, J. S. Apolipoprotein A-I directly interacts with amyloid precursor protein and inhibits Aβ aggregation and toxicity. 생화학. , (2001).
  15. Jiang, S. X., Slinn, J., Aylsworth, A., Hou, S. T. Vimentin participates in microglia activation and neurotoxicity in cerebral ischemia. Journal of Neurochemistry. , (2012).
  16. Liu, L. Y., et al. Nicotinamide Phosphoribosyltransferase May Be Involved in Age-Related Brain Diseases. PLoS ONE. , (2012).
  17. Abbatiello, S., et al. New guidelines for publication of manuscripts describing development and application of targeted mass spectrometry measurements of peptides and proteins. Molecular and Cellular Proteomics. 16 (3), 327-328 (2017).
check_url/kr/61833?article_type=t

Play Video

Cite This Article
Ghantasala, S., Pai, M. G. J., Srivastava, S. Quantitative Proteomics Workflow using Multiple Reaction Monitoring Based Detection of Proteins from Human Brain Tissue. J. Vis. Exp. (174), e61833, doi:10.3791/61833 (2021).

View Video