Summary

研究钝力损伤对成年斑马鱼影响的可扩展模型

Published: May 31, 2021
doi:

Summary

我们修改了成年斑马鱼的Marmarou体重下降模型,以检查钝力创伤性脑损伤(TBI)后的病理范围以及随后神经元再生的机制。这种钝力 TBI 模型具有可扩展性,可诱发轻度、中度或重度 TBI,并概括在人类 TBI 中观察到的损伤异质性。

Abstract

钝力创伤性脑损伤(TBI)是最常见的头部创伤形式,其严重程度范围广泛,并导致复杂和异质的继发效应。虽然没有机制来替换或再生人类TBI后丢失的神经元,但斑马鱼具有在整个身体(包括大脑)中再生神经元的能力。为了检查斑马鱼在钝力TBI后表现出的病理学的广度,并研究随后的神经元再生反应背后的机制,我们修改了常用的啮齿动物Marmarou体重下降,以用于成年斑马鱼。我们的简单钝力TBI模型是可扩展的,可诱导轻度,中度或重度TBI,并概括了在人类TBI之后观察到的许多表型,例如接触性和创伤后癫痫发作,水肿,硬膜下和脑内血肿以及认知障碍,每种表型都以损伤严重程度依赖性的方式显示。TBI后遗症在受伤后几分钟内开始出现,在受伤后7天内消退并恢复到接近未受损的控制水平。再生过程早在损伤后48小时(hpi)就开始了,细胞增殖峰值在60 hpi处观察到。因此,我们的斑马鱼钝力TBI模型产生类似于人类TBI的特征性原发性和继发性损伤TBI病理,这允许研究疾病的发作和进展,以及斑马鱼独有的神经元再生机制。

Introduction

创伤性脑损伤(TBIs)是一场全球性健康危机,也是死亡和残疾的主要原因。在美国,每年约有 290 万人患有 TBI,在 2006-2014 年期间,TBI 或 TBI 后遗症导致的死亡率增加了 50% 以上1。然而,TBI 的病因、病理学和临床表现各不相同,这在很大程度上部分归因于损伤机制 (MOI),这也会影响治疗策略和预测预后2。虽然TBI可以由各种MOI引起,但它们主要是穿透性或钝力创伤的结果。穿透性创伤占TBI的一小部分,并产生严重的局灶性损伤,局限于直接和周围的刺穿脑区域3。相比之下,钝力TBI在一般人群中更常见,涵盖一系列严重程度(轻度、中度和重度),并产生累及多个脑区域的弥漫性、异质性和整体性损伤145

斑马鱼 (Danio rerio) 已被用于检查跨越中枢神经系统(CNS)的各种神经损伤6789。与哺乳动物不同,斑马鱼还具有先天而强大的再生反应,以修复中枢神经系统损伤10。目前的斑马鱼创伤模型使用各种伤害方法,包括穿透,切除,化学侮辱或压力波111213141516。然而,这些方法中的每一种都利用了人群很少经历的MOI,不能在一系列损伤严重程度上扩展,并且不能解决钝性TBI后报告的异质性或严重程度依赖性TBI后遗症。这些因素限制了斑马鱼模型的使用,以了解与人群中最常见的TBI形式(轻度钝力损伤)相关的病理的潜在机制。

我们的目标是开发一种快速且可扩展的钝力TBI斑马鱼模型,为研究损伤病理学,TBI后遗症的进展以及先天再生反应提供途径。我们修改了常用的啮齿动物Marmarou17 重量下降,并将其应用于成年斑马鱼。该模型产生可重复的严重程度范围,从轻度,中度到重度。该模型还以严重程度依赖性的方式概括了人类TBI病理学的多个方面,包括癫痫发作,水肿,硬膜下和脑内血肿,神经元细胞死亡和认知缺陷,如学习和记忆障碍。受伤后几天,病理和缺陷消散,恢复到类似于未受损对照的水平。此外,该斑马鱼模型在损伤严重程度方面显示出整个神经轴的强健增殖和神经元再生反应。

在这里,我们详细介绍了钝力创伤的设置和诱导,创伤后癫痫发作的评分,血管损伤的评估,准备脑切片的说明,量化水肿的方法以及对损伤后增殖反应的见解。

Protocol

斑马鱼在弗雷曼生命科学中心的圣母院斑马鱼设施中饲养和维护。本手稿中描述的方法得到了圣母大学动物护理和使用委员会的批准。 1. 创伤性脑损伤范式 将1 mL 2-苯氧乙醇加入1 L系统水中(60mg Instant Ocean在1L去离子RO水中)。 在室温下准备一个装有2L系统水的曝气回收罐。 选择滚珠轴承的所需重量以及钢/塑料管的所需长度和直径,并确定能量和冲击力…

Representative Results

准备损伤诱导装置可以快速而简单地向成年斑马鱼提供可扩展的钝力TBI。损伤模型的分级严重程度提供了几个易于识别的成功损伤指标,尽管血管损伤是最简单和最突出的病理之一(图3)。受伤期间使用的鱼品系可以使该指标更容易或更难识别。当使用野生型AB鱼(WTAB,图3A-D)时,很难区分miTBI或moTBI的?…

Discussion

长期以来,神经创伤和相关后遗症的研究一直集中在传统的非再生啮齿动物模型20上。直到最近,研究才将各种形式的CNS损伤应用于再生模型911131421。虽然这些模型具有洞察力,但它们受到使用在人群中罕见的损伤方法(穿透性创伤,化学消融,爆…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢海德实验室成员的深思熟虑的讨论,弗雷曼生命科学中心负责斑马鱼护理和饲养的技术人员,以及圣母大学光学显微镜核心/ NDIIF使用仪器及其服务。这项工作得到了圣母大学斑马鱼研究中心,圣母大学干细胞和再生医学中心的支持,以及NIH R01-EY018417国家眼科研究所(DRH),国家科学基金会研究生研究奖学金计划(JTH),LTC Neil Hyland圣母院奖学金(JTH)的资助, 自由哨兵奖学金(JTH)和Pat Tillman奖学金(JTH)。

Materials

2-phenoxyethanol Sigma Alderich 77699
#00 buckshot Remington RMS23770 3.3g weight for sTBI
#3 buckshot Remington RMS23776 1.5g weight for miTBI/moTBI
#5 Dumont forceps WPI 14098
5-ethynyl-2’-deoxyuridine Life Technologies A10044 EdU
5ml glass vial VWR 66011-063
Click-iT EdU Cell Proliferation Kit Life Technologies C10340
CytoOne 12-well plate USA Scientific CC7682-7512
Instant Ocean Instant Ocean SS15-10
Super frost postiviely charged slides VWR 48311-703
Super PAP Pen Liquid Blocker Ted Pella 22309
Tissue freezing medium VWR 15148-031

References

  1. Centers for Disease Control and Prevention. Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths-United States, 2014. Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. , (2019).
  2. Galgano, M., et al. Traumatic brain injury: current treatment strategies and future endeavors. Cell transplantation. 26 (7), 1118-1130 (2017).
  3. Santiago, L. A., Oh, B. C., Dash, P. K., Holcomb, J. B., Wade, C. E. A clinical comparison of penetrating and blunt traumatic brain injuries. Brain injury. 26 (2), 107-125 (2012).
  4. Korley, F. K., Kelen, G. D., Jones, C. M., Diaz-Arrastia, R. Emergency department evaluation of traumatic brain injury in the United States, 2009-2010. The Journal of Head Trauma Rehabilitation. 31 (6), 379-387 (2016).
  5. Faul, M., Xu, L., Wald, M., Coronado, V. . Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths. , (2010).
  6. Campbell, L. J., et al. Notch3 and DeltaB maintain Müller glia quiescence and act as negative regulators of regeneration in the light-damaged zebrafish retina. Glia. 69 (3), 546-566 (2021).
  7. Green, L. A., Nebiolo, J. C., Smith, C. J. Microglia exit the CNS in spinal root avulsion. PLoS Biology. 17 (2), 3000159 (2019).
  8. Hentig, J., Byrd-Jacobs, C. Exposure to zinc sulfate results in differential effects on olfactory sensory neuron subtypes in the adult zebrafish. International Journal of Molecular Sciences. 17 (9), 1445 (2016).
  9. Ito, Y., Tanaka, H., Okamoto, H., Oshima, T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. 발생학. 342 (1), 26-38 (2010).
  10. Becker, C., Becker, T. Adult zebrafish as a model for successful central nervous system regeneration. Restorative Neurology and Neuroscience. 26 (2-3), 71-80 (2008).
  11. Alyenbawwi, H., et al. Seizures are a druggable mechanistic link between TBI and subsequent tauopathy. eLife. 10, 58744 (2021).
  12. Kaslin, J., Kroehne, V., Ganz, J., Hans, S., Brand, M. Distinct roles of neuroepithelia-like and radial glia-like progenitor cells in cerebellar regeneration. Development. 144 (8), 1462-1471 (2017).
  13. McCutcheon, V., et al. A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. Journal of Neurotrauma. 34 (7), 1382-1393 (2017).
  14. Skaggs, K., Goldman, D., Parent, J. Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia. 62 (12), 2061-2079 (2014).
  15. Kishimoto, N., Shimizu, K., Sawamoto, K. Neuronal regeneration in a zebrafish model of adult brain injury. Disease Models & Mechanisms. 5 (2), 200-209 (2012).
  16. Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., Brand, M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development. 138 (22), 4831-4841 (2011).
  17. Marmarou, A., et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. Journal of Neurosurgery. 80 (2), 291-300 (1994).
  18. Mussulini, B. H., et al. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PloS One. 8 (1), 54515 (2013).
  19. Kalueff, A., et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 10 (1), 70-86 (2013).
  20. Xiong, Y., Mahmood, A., Chopp, M. Animal models of traumatic brain injuries. Nature Reviews Neuroscience. 14, 128-142 (2013).
  21. Amamoto, R., et al. Adult axolotls can regenerate original neuronal diversity in response to brain injury. eLife. 5, 13998 (2016).
  22. Yamamoto, S., Levin, H., Prough, D. Mild, moderate and severe: terminology implications for clinical and experimental traumatic brain injury. Current Opinion in Neurology. 31 (6), 672-680 (2008).
  23. Lund, S., et al. Moderate traumatic brain injury, acute phase course and deviations in physiological variables: an observational study. Scandinavian Journal of Trauma Resuscitation and Emergency Medicine. 24, 77 (2016).
  24. Levin, H., Arrastia, R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. The Lancet Neurology. 14 (5), 506-517 (2015).
  25. Ruff, R. M., et al. Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists. 24 (1), 3-10 (2009).
  26. Ganz, J., Brand, M. Adult neurogenesis in fish. Cold Spring Harbor Perspectives in Biology. 8 (7), 019018 (2016).
  27. Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., Brand, M. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. 발생학. 295, 263-277 (2006).
  28. Lahne, M., Nagashima, M., Hyde, D. R., Hitchcock, P. F. Reprogramming Muller glia to regenerate retinal neurons. Annual Review of Visual Science. 6, 171-193 (2020).

Play Video

Cite This Article
Hentig, J., Cloghessy, K., Dunseath, C., Hyde, D. R. A Scalable Model to Study the Effects of Blunt-Force Injury in Adult Zebrafish. J. Vis. Exp. (171), e62709, doi:10.3791/62709 (2021).

View Video