Summary

使用遗传编码的Ca2 + 指示剂(GECI)对星形胶质细胞和神经元中的线粒体Ca2 + 摄取进行成像

Published: January 22, 2022
doi:

Summary

该proctocol旨在为星形胶质细胞和神经元 中的体外体内 线粒体Ca2 + 成像提供一种方法。

Abstract

线粒体Ca2+在控制细胞质Ca2+缓冲、能量代谢和细胞信号转导中起着关键作用。线粒体Ca2 +超载导致各种病理状况,包括神经变性和神经系统疾病中的凋亡细胞死亡。在这里,我们提出了一种细胞类型特异性和线粒体靶向分子方法,用于体外体内星形胶质细胞和神经元中的线粒体Ca2 +成像。我们构建了编码线粒体靶向的Ca2 +指示素(GECIs)GCaMP5G或GCaMP6s(GCaMP5G / 6s)的DNA质粒,具有星形胶质细胞和神经元特异性启动子gfaABC1D和CaMKII以及线粒体靶向序列(mito-)。对于体外线粒体Ca2 +成像,质粒在培养的星形胶质细胞和神经元中转染以表达GCaMP5G / 6s。对于体内线粒体Ca2 +成像,制备腺相关病毒载体(AAV)并将其注射到小鼠大脑中,以在星形胶质细胞和神经元的线粒体中表达GCaMP5G / 6s。我们的方法提供了一种有用的方法来成像星形胶质细胞和神经元中的线粒体Ca2 +动力学,以研究细胞质和线粒体Ca2 +信号传导之间的关系,以及星形胶质细胞 – 神经元相互作用。

Introduction

线粒体是动态的亚细胞器,被认为是能量产生的细胞动力源。另一方面,线粒体可以响应局部或胞质Ca2 +上升而吸收基质中的Ca2 +。线粒体Ca2+摄取影响线粒体功能,包括代谢过程,如三羧酸(TCA)循环的反应和氧化磷酸化,并在生理条件下调节Ca2 +敏感蛋白1,2,3,4。线粒体Ca2 +超载也是细胞死亡的决定因素,包括各种脑部疾病5,6,7中的坏死和凋亡。它导致线粒体通透性过渡孔(mPTPs)的打开和半胱天冬酶辅因子的释放,从而引发凋亡细胞死亡。因此,研究活细胞中的线粒体Ca2 +动力学和处理非常重要,以更好地了解细胞生理学和病理学。

线粒体通过Ca2+摄取和流出之间的平衡来维持基质Ca2 +稳态。线粒体Ca2 +摄取主要由线粒体Ca2 +单转运体(MCU)介导,而线粒体Ca2 +外排由Na+-Ca2 +-Li+交换子(NCLXs)和H+/ Ca2 +交换子(mHCXs)8介导。平衡可以通过刺激G蛋白偶联受体(GPCRs)来干扰9。线粒体Ca2 +稳态也受线粒体缓冲的影响,形成不溶性xCa2 +-xPO4x-xOH复合物8

细胞内和线粒体中Ca2+浓度([Ca2+])的变化可以通过荧光或发光Ca2+指示剂进行评估。Ca2+与指示剂的结合导致光谱修饰,允许在活细胞中实时记录游离细胞[Ca2+]。目前有两种类型的探针可用于监测细胞中的Ca2 +变化:有机化学指示剂和遗传编码的Ca2 +指示剂(GECI)。通常,对于所研究的生物学问题,可以使用具有不同Ca2 +亲和力(基于Kd),光谱特性(激发和发射波长),动态范围和灵敏度的不同变体。虽然许多合成的有机Ca2+指示剂已被用于胞质Ca2+成像,但只有少数可以选择性地加载到线粒体基质中用于线粒体Ca2+成像,其中Rhod-2是使用最广泛的(评论见10,11)。然而,Rhod-2在长时间的实验中存在泄漏的主要缺点;此外,它在线粒体,其他细胞器和细胞质基质之间分配,使得不同亚部门的绝对测量变得困难。相反,通过使用细胞型特异性启动子和亚细胞区室靶向序列,GECI可以在不同的细胞类型和亚细胞区室中表达,以便在体外体内进行细胞和区室特异性Ca2 +成像。基于单波长荧光强度的GCaMP Ca2+指标最近成为GECIs的主要指标12、13、14、15、16。在本文中,我们提供了星形胶质细胞和神经元中GCaMP5G和GCaMP6s(GCaMP5G / 6s)的线粒体靶向和细胞类型特异性表达的方案,以及成像这些细胞类型中的线粒体Ca2 +摄取。使用该协议,可以揭示单个线粒体中GCaMP6G / 6s的表达,并且可以在体外体内的星形胶质细胞和神经元中实现单个线粒体分辨率中的Ca2 +摄取 。

Protocol

涉及动物的程序已获得密苏里大学哥伦比亚分校机构动物护理和使用委员会(IACUC)的批准。 1. DNA质粒的构建 注意:对于 体外 和 体内 成像,构建编码GCaMP5G / 6s的DNA质粒与星形胶质细胞和神经元特异性启动子以及线粒体靶向序列。 将线粒体基质(MM)靶向序列(mito-)插入ATGT CCGTCCTGAC GCCGCTGCTG CTGCGGGGCT TGACAGGCTC GGCCCGGCGG CTCC…

Representative Results

本研究的目的是提供一种方法,在体外和体内使用星形胶质细胞和神经元中的GECI对线粒体Ca2 +信号进行成像。本文给出了体外和体内线粒体Ca2 +成像的结果。 培养的星形胶质细胞和神经元中的体外线粒体Ca2 +信号传导星形胶质细胞中的线粒体Ca2 +摄取可以通…

Discussion

在本文中,我们提供了一种用于成像星形胶质细胞和神经元中线粒体Ca2 +信号的方法和方案。我们实施了线粒体靶向和细胞类型特异性策略来表达GECI GCaMP5G / 6s。为了靶向线粒体中的GCaMP5G / 6s,我们在质粒中加入了线粒体靶向序列。为了在体内星形胶质细胞和神经元中表达GCaMP5G/6s,我们将星形胶质细胞特异性启动子gfaABC1D和神经元特异性启动子CaMKII插入质粒中。星形胶质细胞和神经?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院国家神经疾病和中风研究所(NINDS)资助的R01NS069726和R01NS094539到SD。我们感谢Erica DeMers的录音。

Materials

Artificial tears ointment Rugby NDC-0536-6550-91 83% white petrolatum
Cyanoacrylate glue World Precision Instruments 3M Vetbond Adhesive
Dissecting stereomicroscope Nikon SMZ 2B Surgery
Dumont forceps with fine tip Fine Science Tools 11255-20 for removal of dura
Glass cover slips, 0.13-0.17 mm thick Fisher Scientific 12-542A for cranial window cover
High speed micro drill Fine Science Tools 18000-17 with bone polishing drill bit
Injection syringe Hamilton 2.5 ml for viral injection
Ketamine VEDCO NDC-50989-996-06 100 mg/kg body weight
Low melting point agarose Sigma-Aldrich A9793 reducing movement artifacts
Metal frame Custom-made see Fig 1 for brain attachment to microscope stage
MicroSyringe Pump Controller World Precision Instruments UMP3 Injection speed controller
Mouse stereotaxic device Stoelting 51725 for holding mice
Perfusion chamber Warner Instruments 64-0284
Persfusion system ALA Scientific Instruments ALA-VM8
Self-regulating heating pad Fine Science Tools 21061 to prevent hypothermia of mice
Sulforhodamine 101 Invitrogen S-359 red fluorescent dye to label astrocytes
Surgical scissors, 12 cm Fine Science Tools 14002-12 for dissection
Trephine Fine Science Tools 18004-23 for clearing of material
Xylazine VEDCO NDC-50989-234-11 10 mg/kg body weight

Referências

  1. Griffiths, E. J., Rutter, G. A. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1787 (11), 1324-1333 (2009).
  2. Pizzo, P., Drago, I., Filadi, R., Pozzan, T. Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Archiv – European Journal of Physiology. 464 (1), 3-17 (2012).
  3. Llorente-Folch, I., et al. Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. The Journal of Neuroscience. 33 (35), 13957-13971 (2013).
  4. Burkeen, J. F., Womac, A. D., Earnest, D. J., Zoran, M. J. Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. The Journal of Neuroscience. 31 (23), 8432-8440 (2011).
  5. Duchen, M. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Archiv – European Journal of Physiology. 464 (1), 111-121 (2012).
  6. Gouriou, Y., Demaurex, N., Bijlenga, P., De Marchi, U. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie. 93 (12), 2060-2067 (2011).
  7. Qiu, J., et al. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nature Communications. 4, 2034 (2013).
  8. Filadi, R., Greotti, E. The yin and yang of mitochondrial Ca2+ signaling in cell physiology and pathology. Cell Calcium. 93, 102321 (2021).
  9. Finkel, T., et al. The ins and outs of mitochondrial calcium. Circulation Research. 116 (11), 1810-1819 (2015).
  10. Paredes, R. M., Etzler, J. C., Watts, L. T., Zheng, W., Lechleiter, J. D. Chemical calcium indicators. Methods. 46 (3), 143-151 (2008).
  11. Contreras, L., Drago, I., Zampese, E., Pozzan, T. Mitochondria: The calcium connection. Biochimica et Biophysica Acta (BBA. 1797 (6-7), 607-618 (2010).
  12. Tian, L., et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods. 6 (12), 875-881 (2009).
  13. Yamada, Y., et al. Quantitative comparison of genetically encoded Ca2+ indicators in cortical pyramidal cells and cerebellar Purkinje cells. Frontiers in Cellular Neuroscience. 5, 18 (2011).
  14. Akerboom, J., et al. Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging. The Journal of Neuroscience. 32 (40), 13819-13840 (2012).
  15. Chen, T. W., et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 499 (7458), 295-300 (2013).
  16. Dana, H., et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods. 16 (7), 649-657 (2019).
  17. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., Pozzan, T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Current Biology: CB. 5 (6), 635-642 (1995).
  18. Xie, Y., Wang, T., Sun, G. Y., Ding, S. Specific disruption of astrocytic Ca2+ signaling pathway in vivo by adeno-associated viral transduction. Neurociência. 170 (4), 992-1003 (2010).
  19. Lee, Y., et al. GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia. 56 (5), 481-493 (2008).
  20. Li, H., et al. Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: Mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium. 56 (6), 457-466 (2014).
  21. Zhang, N., Ding, S. Imaging of mitochondrial and cytosolic Ca2+ signals in cultured astrocytes. Current Protocols in Neuroscience. 82, 1-11 (2018).
  22. Bi, J., Li, H., Ye, S. Q., Ding, S. Pre-B-cell colony-enhancing factor exerts a neuronal protection through its enzymatic activity and the reduction of mitochondrial dysfunction in in vitro ischemic models. Journal of Neurochemistry. 120 (2), 334-346 (2012).
  23. Wang, X., Li, H., Ding, S. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia. Scientific Reports. 6, 32416 (2016).
  24. Wang, X., et al. Subcellular NAMPT-mediated NAD+ salvage pathways and their roles in bioenergetics and neuronal protection after ischemic injury. Journal of Neurochemistry. 151 (6), 732-748 (2019).
  25. Xie, Y., Chen, S., Wu, Y., Murphy, T. H. Prolonged deficits in parvalbumin neuron stimulation-evoked network activity despite recovery of dendritic structure and excitability in the somatosensory cortex following global ischemia in mice. The Journal of Neuroscience. 34 (45), 14890-14900 (2014).
  26. Ding, S., Milner, R. . In vivo imaging of Ca2+ signaling in astrocytes using two-photon laser scanning fluorescent microscopy in Astrocytes. , 545-554 (2012).
  27. Li, H., et al. Disruption of IP3R2-mediated Ca2+ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. Cell Calcium. 58 (6), 565-576 (2015).
  28. Ding, S., et al. Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia. 57 (7), 767-776 (2009).
  29. Ding, S., et al. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. The Journal of Neuroscience. 27 (40), 10674-10684 (2007).
  30. Gobel, J., et al. Mitochondria-endoplasmic reticulum contacts in reactive astrocytes promote vascular remodeling. Cell Metabolism. 31 (4), 791-808 (2020).
  31. Diaz-Garcia, C. M., et al. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. eLife. 10, 64821 (2021).
check_url/pt/62917?article_type=t

Play Video

Citar este artigo
Zhang, N., Zhang, Z., Ozden, I., Ding, S. Imaging Mitochondrial Ca2+ Uptake in Astrocytes and Neurons using Genetically Encoded Ca2+ Indicators (GECIs). J. Vis. Exp. (179), e62917, doi:10.3791/62917 (2022).

View Video