Summary

تحويل نماذج أنسجة الحاجز الثابت إلى أنظمة فسيولوجية دقيقة ديناميكية

Published: February 16, 2024
doi:

Summary

يصف هذا البروتوكول منصة زراعة الخلايا القائمة على الغشاء القابلة لإعادة التكوين والتي تدمج تنسيق البئر المفتوح مع قدرات تدفق السوائل. تتوافق هذه المنصة مع البروتوكولات القياسية وتسمح بالانتقال القابل للانعكاس بين أوضاع زراعة البئر المفتوحة والمستنبتات الدقيقة ، مما يلبي احتياجات كل من مختبرات الهندسة والعلوم البيولوجية.

Abstract

الأنظمة الفيزيولوجية الدقيقة هي منصات مصغرة لزراعة الخلايا تستخدم لتقليد بنية ووظيفة الأنسجة البشرية في بيئة المختبر. ومع ذلك ، لم تكتسب هذه المنصات اعتمادا واسع النطاق في مختبرات العلوم البيولوجية حيث تعمل الأساليب القائمة على الأغشية المفتوحة كمعيار ذهبي لمحاكاة حواجز الأنسجة ، على الرغم من افتقارها إلى قدرات تدفق السوائل. يمكن أن تعزى هذه المشكلة في المقام الأول إلى عدم توافق الأنظمة الفيزيولوجية الدقيقة الحالية مع البروتوكولات والأدوات القياسية المطورة لأنظمة الآبار المفتوحة.

هنا ، نقدم بروتوكولا لإنشاء منصة قائمة على الغشاء قابلة لإعادة التشكيل مع هيكل بئر مفتوح ، وقدرة على تحسين التدفق ، والتوافق مع البروتوكولات التقليدية. يستخدم هذا النظام نهج التجميع المغناطيسي الذي يتيح التبديل العكسي بين أوضاع البئر المفتوحة وأوضاع الموائع الدقيقة. باستخدام هذا النهج ، يتمتع المستخدمون بالمرونة لبدء تجربة بتنسيق البئر المفتوح باستخدام البروتوكولات القياسية وإضافة أو إزالة إمكانات التدفق حسب الحاجة. لإثبات الاستخدام العملي لهذا النظام وتوافقه مع التقنيات القياسية ، تم إنشاء طبقة أحادية الخلية البطانية في شكل بئر مفتوح. تمت إعادة تشكيل النظام لإدخال تدفق السوائل ثم تم تحويله إلى تنسيق البئر المفتوح لإجراء تلطيخ المناعة واستخراج الحمض النووي الريبي. نظرا لتوافقه مع بروتوكولات الآبار المفتوحة التقليدية وقدرة تحسين التدفق ، من المتوقع أن يتم اعتماد هذا التصميم القابل لإعادة التكوين من قبل كل من مختبرات الهندسة والعلوم البيولوجية.

Introduction

تعمل الحواجز الوعائية كواجهة مهمة تفصل حجرة الدم عن الأنسجة المحيطة. إنها تلعب دورا مهما في الحفاظ على التوازن من خلال جذب الخلايا المناعية ، والتحكم في النفاذية الجزيئية ، والحماية من تسلل مسببات الأمراض إلى الأنسجة 1,2. تم تطوير نماذج الاستزراع في المختبر لمحاكاة البيئة المكروية في الجسم الحي ، مما يتيح إجراء تحقيقات منهجية في العوامل والظروف التي تؤثر على خصائص الحاجز في كل من الحالات الصحية والمريضة 3,4.

النهج الأكثر استخداما لنماذج الاستزراع هذه هو تكوين “البئر المفتوح”الشبيه ب Transwell 5 ، حيث يفصل غشاء استزراع مسامي محفور في المسار المقصورات المملوءة بالوسائط (الشكل 1 أ). في هذا الشكل ، يمكن زرع الخلايا على جانبي الغشاء ، وقد تم تطوير مجموعة واسعة من البروتوكولات التجريبية. ومع ذلك ، فإن هذه الأنظمة محدودة في قدرتها على توفير تدفقات السوائل الضرورية لدعم نضوج الحاجز ومحاكاة الدورة الدموية للخلايا المناعية التي تظهر في الجسم الحي 5,6. وبالتالي ، لا يمكن استخدامها للدراسات التي تتطلب تدفقات ديناميكية تقدم جرعات دوائية أو تحفيزا ميكانيكيا أو إجهادات قص ناتجة عن السوائل6،7،8.

للتغلب على قيود أنظمة الآبار المفتوحة ، تم تطوير منصات الموائع الدقيقة التي تجمع بين أغشية الاستزراع المسامية والقنوات السائلة القابلة للعنونة بشكل فردي9. توفر هذه المنصات تحكما دقيقا في توجيه السوائل ، والتروية ، وإدخال المركبات الكيميائية ، وتحفيز القص المتحكم فيه ، وقدرات إضافة الخلاياالديناميكية 7،10،11،12،13. على الرغم من القدرات المتقدمة التي توفرها منصات الموائع الدقيقة ، إلا أنها لم تشهد اعتمادا واسع النطاق في مختبرات العلوم البيولوجية بسبب بروتوكولات الموائع الدقيقة المعقدة وعدم توافقها مع سير العمل التجريبي المعمول به4،10،14.

لسد الفجوة بين هذه التقنيات ، نقدم بروتوكولا يستخدم نظاما قابلا لإعادة التكوين مغناطيسيا وقائما على الوحدة. يمكن تبديل هذا النظام بسهولة بين أوضاع البئر المفتوح وأوضاع الموائع الدقيقة بناء على الاحتياجات المحددة للتجربة. تتميز المنصة بجهاز بئر مفتوح ، يعرف باسم m-μSiM (نظام فسيولوجي دقيق معياري يتم تمكينه بواسطة غشاء سيليكون) ، مع غشاء استزراع بسمك 100 نانومتر (غشاء نانوي). يمتلك هذا الغشاء النانوي مسامية عالية (15٪) وشفافية تشبه الزجاج ، كما هو موضح في الشكل 1B. إنه يفصل فعليا الجزء العلوي عن القناة السفلية ، مما يسمح بالنقل الجزيئي عبر مقاييس الطول الفسيولوجية15. على عكس الأغشية التقليدية المحفورة بالمسار ، والتي عرفت تحديات في تصوير الخلايا الحية بتصوير المجال الساطع ، تتيح الخصائص البصرية والفيزيائية المواتية للغشاء النانوي تصورا واضحا للخلايا على جانبي سطح الغشاء15،16،17.

يحدد هذا البروتوكول تصنيع وحدات البذر والتدفق المتخصصة ويشرح إعادة التكوين المغناطيسي للمنصة. يوضح كيف يمكن استخدام المنصة لإنشاء حواجز بطانية في ظل ظروف ثابتة وديناميكية. يكشف هذا العرض التوضيحي أن الخلايا البطانية تصطف على طول اتجاه التدفق ، مع تنظيم أهداف الجينات الحساسة للقص تحت تحفيز القص.

Protocol

يمكن استخدام هذا التصميم في أوضاع مختلفة بناء على المتطلبات التجريبية وتفضيلات المستخدم النهائي. قبل كل تجربة ، راجع مخطط تدفق القرار المعروض في الشكل 2 لتحديد الخطوات والوحدات اللازمة للبروتوكول. على سبيل المثال ، إذا كان المستخدم ينوي الحفاظ على تنسيق البئر المفتوح خلا?…

Representative Results

يتم وضع الوحدة الأساسية المفتوحة في البداية داخل تجويف معين تم إنشاؤه بواسطة مبيت سفلي وغطاء ، كما هو موضح في الشكل 6 أ. بعد ذلك ، يتم إدخال وحدة التدفق ، التي تتضمن قناة صغيرة ومنافذ وصول ، في بئر الوحدة الأساسية. يتم إغلاق وحدة التدفق بإحكام ضد طبقة دعم السيليكون للغشاء بسب…

Discussion

الهدف من هذا البروتوكول هو تطوير طريقة عملية لدمج قدرات التدفق في منصة بئر مفتوحة تتميز بغشاء نانوي فائق النحافة. في هذا التصميم ، يتم استخدام نهج الإغلاق المغناطيسي ، مما يسمح بالتبديل بين أوضاع البئر المفتوحة والسائلة أثناء التجارب والجمع بين مزايا كلا النهجين. على عكس المنصات التقليدي…

Declarações

The authors have nothing to disclose.

Acknowledgements

تم تمويل هذا البحث جزئيا من قبل المعهد الوطني للصحة تحت أرقام الجوائز R43GM137651 و R61HL154249 و R16GM146687 و NSF منحة CBET 2150798. يشكر المؤلفون RIT Machine Shop لتصنيع قوالب الألومنيوم. المحتوى هو مسؤولية المؤلفين وحدهم ولا يمثل بالضرورة الآراء الرسمية للمعاهد الوطنية للصحة.

Materials

0.5 x 0.86 Micro Flow tubes Langer Instruments WX10-14 & DG Series
1 mm Disposable Biopsy Punches, Integra Miltex VWR 95039-090
1x PBS 7.4 pH ThermoFisher Scientific 10010023
20 GAUGE IT SERIES DISPENSING TIP Jensen Global JG20-1.5X
21 GAUGE NT PREMIUM SERIES ANGLED DISPENSING TIP Jensen Global JG21-1.0HPX-90
3M 467 MP Pressure senstitive adhesive (PSA) DigiKey 3M9726-ND
3M 468 MP Pressure senstitive adhesive (PSA) DigiKey 3M9720-ND
AlexaFluor 488 conjugated phalloidin ThermoFisher Scientific A12379 
Applied Biosystems TaqMan Fast Advanced Master Mix Thermo Fisher Scientific 4444556
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent grade, Alfa Aesar, Size = 10 g VWR AAJ64100-09
Clear Scratch- and UV-Resistant Cast Acrylic Sheet McMaster-Carr 8560K171 12" x 12" x 1/16"
Clear Scratch- and UV-Resistant Cast Acrylic Sheet McMaster-Carr 8589K31 12" x 12" x 3/32"
Clear Scratch- and UV-Resistant Cast Acrylic Sheet McMaster-Carr 8560K191 12" x 12" x 7.64"
Corning Fibronectin, Human, 1 mg Corning 47743-728
Cover Glasses, Globe Scientific, L x W = 24 x 60 mm VWR 10118-677
DOW SYLGARD 184 SILICONE ENCAPSULANT CLEAR 0.5 KG KIT Ellsworth Adhesives 4019862
EGM-2 Endothelial Cell Growth Medium-2 BulletKit Lonza CC-3162
Fixture A1&A2 SiMPore Inc. NA
Fixture B1&B2 SiMPore Inc. NA
High Capacity cDNA Reverse Transcription Kit with RNase Inhibitor Thermo Fisher Scientific 4374966
Human umbilical vein endothelial cells (HUVEC) ThermoFisher Scientific C0035C
LIVE/DEAD Cell Imaging Kit (488/570) Thermo Fisher Scientific R37601
Molecular Probes Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific H3570
Nickel-plated magnets (4.75 mm diameter, 0.34 kg pull force) K&J Magnetics D31 3/16" dia. x 1/16" thick
Paraformaldehyde, 4% w/v aq. soln., methanol free, Alfa Aesar Fisher Scientific aa47392-9M
Peristaltic Pump Langer Instruments BQ50-1J-A
Photoresist SU-8 developer solution Fisher Scientific NC9901158
PVDF syringe filters PerkinElmer 2542913
Silicon wafer University wafer,USA 1196
SU-8 3050 Fisher Scientific NC0702369
Target gene: eNOS (Hs01574659_m1) ThermoFisher Scientific 4331182
Target gene: GAPDH (Hs02786624_g1) ThermoFisher Scientific 4331182
Target gene: KLF2 (Hs00360439_g1) ThermoFisher Scientific 4331182
Thermo Scientific Pierce 20x PBS Tween 20 Thermo Fisher Scientific 28352
Transport Tube Sample White caps, 5 mL, Sterile VWR 100500-422
TRI-reagent ThermoFisher Scientific AM9738
Ultrathin Nanoporous Membrane Chip SiMPore Inc. NPSN100-1L The design is  compatible with all of SiMPore membranes
uSiM component 1 SiMPore Inc. NA
uSiM component 2 SiMPore Inc. NA

Referências

  1. Claesson-Welsh, L., Dejana, E., McDonald, D. M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends in Molecular Medicine. 27 (4), 314-331 (2021).
  2. Vera, D., et al. Engineering tissue barrier models on hydrogel microfluidic platforms. ACS Applied Materials & Interfaces. 13 (12), 13920-13933 (2021).
  3. Wang, Y. I., Abaci, H. E., Shuler, M. L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnology and Bioengineering. 114 (1), 184-194 (2017).
  4. Sakolish, C. M., Esch, M. B., Hickman, J. J., Shuler, M. L., Mahler, G. J. Modeling barrier tissues in vitro: methods, achievements, and challenges. eBioMedicine. 5, 30-39 (2016).
  5. Kaisar, M. A., et al. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opinion on Drug Discovery. 12 (1), 89-103 (2017).
  6. Tan, K., et al. A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions. Lab on a Chip. 19 (9), 1556-1566 (2019).
  7. Ayuso, J. M., Virumbrales-Muñoz, M., Lang, J. M., Beebe, D. J. A role for microfluidic systems in precision medicine. Nature Communications. 13 (1), 3086 (2022).
  8. Katt, M. E., Shusta, E. V. In vitro models of the blood-brain barrier: building in physiological complexity. Current Opinion in Chemical Engineering. 30, 42-52 (2020).
  9. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nature Reviews Genetics. 23 (8), 467-491 (2022).
  10. Duncombe, T. A., Tentori, A. M., Herr, A. E. Microfluidics: reframing biological enquiry. Nature reviews. Molecular cell biology. 16 (9), 554-567 (2015).
  11. Williams, M. J., et al. A low-cost, rapidly integrated debubbler (rid) module for microfluidic cell culture applications. Micromachines. 10 (6), 360 (2019).
  12. Ahmed, A., et al. Engineering fiber anisotropy within natural collagen hydrogels. American Journal of Physiology-Cell Physiology. 320 (6), C1112-C1124 (2021).
  13. Ahmed, A., et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Advanced Materials Technologies. 6 (4), 2001186 (2021).
  14. Łach, A., Wnuk, A., Wójtowicz, A. K. Experimental models to study the functions of the blood-brain barrier. Bioengenharia. 10 (5), 519 (2023).
  15. McCloskey, M. C., et al. The Modular µSiM: A mass produced, rapidly assembled, and reconfigurable platform for the study of barrier tissue models in vitro. Advanced Healthcare Materials. 11 (18), 2200804 (2022).
  16. Mansouri, M., et al. The modular µsim reconfigured: integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Advanced Healthcare Materials. 11 (21), 2200802 (2022).
  17. Hudecz, D., et al. Modelling a human blood-brain barrier co-culture using an ultrathin silicon nitride membrane-based microfluidic device. International Journal of Molecular Sciences. 24 (6), 5624 (2023).
  18. Joshi, I. M., et al. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. bioRxiv. , (2023).
  19. Hsu, M. C., et al. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Scientific Reports. 12 (1), 10769 (2022).
  20. Rogers, M. T., et al. A high-throughput microfluidic bilayer co-culture platform to study endothelial-pericyte interactions. Scientific reports. 11 (1), 12225 (2021).
  21. Wettschureck, N., Strilic, B., Offermanns, S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiological Reviews. 99 (3), 1467-1525 (2019).
  22. Wang, Y. I., Shuler, M. L. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab on a Chip. 18 (17), 2563-2574 (2018).
  23. Nayak, L., Lin, Z., Jain, M. K. 34;Go with the flow": how Krüppel-like factor 2 regulates the vasoprotective effects of shear stress. Antioxidants & Redox Signaling. 15 (5), 1449-1461 (2011).
  24. Satoh, T., et al. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system. Lab on a chip. 16 (12), 2339-2348 (2016).
  25. Abhyankar, V. V., Wu, M., Koh, C. Y., Hatch, A. V. A Reversibly sealed, easy access, modular (seam) microfluidic architecture to establish in vitro tissue interfaces. PLOS ONE. 11 (5), e0156341 (2016).
  26. Ahmed, A., et al. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication. 14 (3), 035019 (2022).
  27. Hasan, M. R., et al. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. 4 (2), 025015 (2018).
  28. Ahmed, A., et al. Microengineering 3D collagen hydrogels with long-range fiber alignment. Journal of Visualized Experiments. 187, e64457 (2022).
check_url/pt/66090?article_type=t

Play Video

Citar este artigo
Mansouri, M., Hughes, A. R., Audi, L. A., Carter, A. E., Vidas, J. A., McGrath, J. L., Abhyankar, V. V. Transforming Static Barrier Tissue Models into Dynamic Microphysiological Systems. J. Vis. Exp. (204), e66090, doi:10.3791/66090 (2024).

View Video