Summary

Umwandlung von statischen Barrieregewebemodellen in dynamische mikrophysiologische Systeme

Published: February 16, 2024
doi:

Summary

Dieses Protokoll beschreibt eine rekonfigurierbare membranbasierte Zellkulturplattform, die das Open-Well-Format mit Flüssigkeitsflussfunktionen integriert. Diese Plattform ist mit Standardprotokollen kompatibel und ermöglicht reversible Übergänge zwischen Open-Well- und mikrofluidischen Kulturmodi, um den Anforderungen von Ingenieur- und Biowissenschaftslabors gerecht zu werden.

Abstract

Mikrophysiologische Systeme sind miniaturisierte Zellkulturplattformen, die verwendet werden, um die Struktur und Funktion menschlicher Gewebe in einer Laborumgebung nachzuahmen. Diese Plattformen haben jedoch keine breite Akzeptanz in biowissenschaftlichen Labors gefunden, wo membranbasierte Ansätze mit offenen Bohrlöchern als Goldstandard für die Nachahmung von Gewebebarrieren dienen, obwohl sie keine Flüssigkeitsflussfähigkeiten haben. Dieses Problem kann in erster Linie auf die Inkompatibilität bestehender mikrophysiologischer Systeme mit Standardprotokollen und -werkzeugen zurückgeführt werden, die für Open-Well-Systeme entwickelt wurden.

Hier stellen wir ein Protokoll zur Erstellung einer rekonfigurierbaren membranbasierten Plattform mit einer Open-Well-Struktur, Durchflussverbesserungsfähigkeit und Kompatibilität mit herkömmlichen Protokollen vor. Dieses System verwendet einen magnetischen Montageansatz, der ein reversibles Umschalten zwischen Open-Well- und Mikrofluidik-Modus ermöglicht. Mit diesem Ansatz haben Benutzer die Flexibilität, ein Experiment im Open-Well-Format mit Standardprotokollen zu beginnen und bei Bedarf Durchflussfunktionen hinzuzufügen oder zu entfernen. Um die praktische Anwendung dieses Systems und seine Kompatibilität mit Standardtechniken zu demonstrieren, wurde eine Endothelzell-Monoschicht in einem Open-Well-Format etabliert. Das System wurde neu konfiguriert, um einen Flüssigkeitsfluss einzuführen, und dann auf das Open-Well-Format umgestellt, um Immunfärbung und RNA-Extraktion durchzuführen. Aufgrund seiner Kompatibilität mit herkömmlichen Open-Well-Protokollen und der Fähigkeit zur Flussverbesserung wird erwartet, dass dieses rekonfigurierbare Design sowohl von technischen als auch von biowissenschaftlichen Labors übernommen wird.

Introduction

Gefäßbarrieren dienen als kritische Schnittstelle, die das Blutkompartiment vom umgebenden Gewebe trennt. Sie spielen eine entscheidende Rolle bei der Erhaltung der Homöostase, indem sie Immunzellen anziehen, die molekulare Permeabilität kontrollieren und das Eindringen von Krankheitserregern in das Gewebe verhindern 1,2. In-vitro-Kulturmodelle wurden entwickelt, um die In-vivo-Mikroumgebung nachzuahmen und systematische Untersuchungen der Faktoren und Bedingungen zu ermöglichen, die die Barriereeigenschaften sowohl im gesunden als auch im kranken Zustand beeinflussen 3,4.

Der am weitesten verbreitete Ansatz für solche Kulturmodelle ist die Transwell-ähnliche “Open-Well”-Konfiguration5, bei der eine poröse, spurgeätzte Kulturmembran mediengefüllte Kompartimente trennt (Abbildung 1A). In diesem Format können Zellen auf beiden Seiten der Membran ausgesät werden, und es wurde eine breite Palette von experimentellen Protokollen entwickelt. Diese Systeme sind jedoch nur begrenzt in ihrer Fähigkeit, die Flüssigkeitsströme bereitzustellen, die für die Unterstützung der Barrierereifung und die Nachahmung der Immunzellzirkulation in vivo unerlässlich sind 5,6. Folglich können sie nicht für Studien verwendet werden, die dynamische Strömungen erfordern, die Arzneimitteldosen, mechanische Stimulation oder flüssigkeitsinduzierte Scherspannungen einführen 6,7,8.

Um die Einschränkungen von Open-Well-Systemen zu überwinden, wurden mikrofluidische Plattformen entwickelt, die poröse Kulturmembranen mit individuell adressierbaren fluidischen Kanälen kombinieren9. Diese Plattformen bieten eine präzise Kontrolle über das Routing von Flüssigkeiten, die Perfusion und das Einbringen chemischer Verbindungen, eine kontrollierte Scherstimulation und dynamische Zelladditionsfunktionen 7,10,11,12,13. Trotz der fortschrittlichen Fähigkeiten, die mikrofluidische Plattformen bieten, haben sie aufgrund komplexer mikrofluidischer Protokolle und ihrer Inkompatibilität mit etablierten experimentellen Arbeitsabläufen keine weit verbreitete Akzeptanz in biowissenschaftlichen Laborsgefunden 4,10,14.

Um die Lücke zwischen diesen Technologien zu schließen, stellen wir ein Protokoll vor, das ein magnetisch rekonfigurierbares, modulbasiertes System verwendet. Dieses System kann je nach den spezifischen Anforderungen des Experiments einfach zwischen Open-Well- und Mikrofluidik-Modus umgeschaltet werden. Die Plattform verfügt über ein Open-Well-Gerät, bekannt als m-μSiM (modulares mikrophysiologisches System, das durch eine Siliziummembran ermöglicht wird), mit einer 100 nm dicken Kulturmembran (Nanomembran). Diese Nanomembran besitzt eine hohe Porosität (15 %) und glasartige Transparenz, wie in Abbildung 1B dargestellt. Es trennt physikalisch das obere Kompartiment von einem unteren Kanal und ermöglicht so den molekularen Transport über physiologische Längenskalen15. Im Gegensatz zu herkömmlichen spurgeätzten Membranen, die bekannte Herausforderungen bei der Bildgebung lebender Zellen mit Hellfeld-Bildgebung haben, ermöglichen die günstigen optischen und physikalischen Eigenschaften der Nanomembran eine klare Visualisierung von Zellen auf beiden Seiten der Membranoberfläche 15,16,17.

Das vorliegende Protokoll skizziert die Herstellung von spezialisierten Seeding- und Flow-Modulen und erklärt die magnetische Rekonfiguration der Plattform. Es zeigt, wie die Plattform eingesetzt werden kann, um Endothelbarrieren sowohl unter statischen als auch unter dynamischen Bedingungen zu etablieren. Diese Demonstration zeigt, dass sich Endothelzellen entlang der Flussrichtung ausrichten, wobei die scherempfindlichen Genziele unter Scherstimulation hochreguliert werden.

Protocol

Dieses Design kann in verschiedenen Modi verwendet werden, basierend auf experimentellen Anforderungen und den Vorlieben des Endbenutzers. Konsultieren Sie vor jedem Experiment das in Abbildung 2 dargestellte Entscheidungsflussdiagramm, um die erforderlichen Schritte und Module für das Protokoll zu bestimmen. Wenn der Benutzer beispielsweise beabsichtigt, das Open-Well-Format während eines Experiments beizubehalten, um es direkt mit dem Transwell-System zu vergleichen, ist die Strukturieru…

Representative Results

Das Open-Well-Core-Modul wird zunächst in einem bestimmten Hohlraum positioniert, der durch ein niedrigeres Gehäuse und ein Deckglas entsteht, wie in Abbildung 6A dargestellt. Anschließend wird das Durchflussmodul, das einen Mikrokanal und Zugangsöffnungen umfasst, in die Vertiefung des Kernmoduls eingesetzt. Das Strömungsmodul ist aufgrund der magnetischen Anziehungskraft zwischen Magneten, die in das untere und obere Gehäuse eingebettet sind, wie in Abbildung 6B<…

Discussion

Ziel dieses Protokolls ist es, eine praktische Methode zu entwickeln, um Durchflussfähigkeiten in eine Open-Well-Plattform mit einer ultradünnen Nanomembran zu integrieren. Bei diesem Design wird ein magnetischer Verriegelungsansatz verwendet, der es ermöglicht, während der Experimente zwischen Open-Well- und Fluidic-Modus zu wechseln und die Vorteile beider Ansätze zu kombinieren. Im Gegensatz zu herkömmlichen dauerhaft verklebten Plattformen ermöglicht die magnetische Verriegelung die Demontage der Plattform an …

Declarações

The authors have nothing to disclose.

Acknowledgements

Diese Forschung wurde teilweise vom National Institute of Health unter den Fördernummern R43GM137651, R61HL154249, R16GM146687 und NSF-Zuschuss CBET 2150798 finanziert. Die Autoren danken dem RIT Machine Shop für die Herstellung von Aluminiumformen. Der Inhalt liegt ausschließlich in der Verantwortung der Autoren und gibt nicht unbedingt die offizielle Meinung der National Institutes of Health wieder.

Materials

0.5 x 0.86 Micro Flow tubes Langer Instruments WX10-14 & DG Series
1 mm Disposable Biopsy Punches, Integra Miltex VWR 95039-090
1x PBS 7.4 pH ThermoFisher Scientific 10010023
20 GAUGE IT SERIES DISPENSING TIP Jensen Global JG20-1.5X
21 GAUGE NT PREMIUM SERIES ANGLED DISPENSING TIP Jensen Global JG21-1.0HPX-90
3M 467 MP Pressure senstitive adhesive (PSA) DigiKey 3M9726-ND
3M 468 MP Pressure senstitive adhesive (PSA) DigiKey 3M9720-ND
AlexaFluor 488 conjugated phalloidin ThermoFisher Scientific A12379 
Applied Biosystems TaqMan Fast Advanced Master Mix Thermo Fisher Scientific 4444556
Bovine Serum Albumin (BSA), Fraction V, 98%, Reagent grade, Alfa Aesar, Size = 10 g VWR AAJ64100-09
Clear Scratch- and UV-Resistant Cast Acrylic Sheet McMaster-Carr 8560K171 12" x 12" x 1/16"
Clear Scratch- and UV-Resistant Cast Acrylic Sheet McMaster-Carr 8589K31 12" x 12" x 3/32"
Clear Scratch- and UV-Resistant Cast Acrylic Sheet McMaster-Carr 8560K191 12" x 12" x 7.64"
Corning Fibronectin, Human, 1 mg Corning 47743-728
Cover Glasses, Globe Scientific, L x W = 24 x 60 mm VWR 10118-677
DOW SYLGARD 184 SILICONE ENCAPSULANT CLEAR 0.5 KG KIT Ellsworth Adhesives 4019862
EGM-2 Endothelial Cell Growth Medium-2 BulletKit Lonza CC-3162
Fixture A1&A2 SiMPore Inc. NA
Fixture B1&B2 SiMPore Inc. NA
High Capacity cDNA Reverse Transcription Kit with RNase Inhibitor Thermo Fisher Scientific 4374966
Human umbilical vein endothelial cells (HUVEC) ThermoFisher Scientific C0035C
LIVE/DEAD Cell Imaging Kit (488/570) Thermo Fisher Scientific R37601
Molecular Probes Hoechst 33342, Trihydrochloride, Trihydrate Thermo Fisher Scientific H3570
Nickel-plated magnets (4.75 mm diameter, 0.34 kg pull force) K&J Magnetics D31 3/16" dia. x 1/16" thick
Paraformaldehyde, 4% w/v aq. soln., methanol free, Alfa Aesar Fisher Scientific aa47392-9M
Peristaltic Pump Langer Instruments BQ50-1J-A
Photoresist SU-8 developer solution Fisher Scientific NC9901158
PVDF syringe filters PerkinElmer 2542913
Silicon wafer University wafer,USA 1196
SU-8 3050 Fisher Scientific NC0702369
Target gene: eNOS (Hs01574659_m1) ThermoFisher Scientific 4331182
Target gene: GAPDH (Hs02786624_g1) ThermoFisher Scientific 4331182
Target gene: KLF2 (Hs00360439_g1) ThermoFisher Scientific 4331182
Thermo Scientific Pierce 20x PBS Tween 20 Thermo Fisher Scientific 28352
Transport Tube Sample White caps, 5 mL, Sterile VWR 100500-422
TRI-reagent ThermoFisher Scientific AM9738
Ultrathin Nanoporous Membrane Chip SiMPore Inc. NPSN100-1L The design is  compatible with all of SiMPore membranes
uSiM component 1 SiMPore Inc. NA
uSiM component 2 SiMPore Inc. NA

Referências

  1. Claesson-Welsh, L., Dejana, E., McDonald, D. M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends in Molecular Medicine. 27 (4), 314-331 (2021).
  2. Vera, D., et al. Engineering tissue barrier models on hydrogel microfluidic platforms. ACS Applied Materials & Interfaces. 13 (12), 13920-13933 (2021).
  3. Wang, Y. I., Abaci, H. E., Shuler, M. L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnology and Bioengineering. 114 (1), 184-194 (2017).
  4. Sakolish, C. M., Esch, M. B., Hickman, J. J., Shuler, M. L., Mahler, G. J. Modeling barrier tissues in vitro: methods, achievements, and challenges. eBioMedicine. 5, 30-39 (2016).
  5. Kaisar, M. A., et al. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opinion on Drug Discovery. 12 (1), 89-103 (2017).
  6. Tan, K., et al. A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions. Lab on a Chip. 19 (9), 1556-1566 (2019).
  7. Ayuso, J. M., Virumbrales-Muñoz, M., Lang, J. M., Beebe, D. J. A role for microfluidic systems in precision medicine. Nature Communications. 13 (1), 3086 (2022).
  8. Katt, M. E., Shusta, E. V. In vitro models of the blood-brain barrier: building in physiological complexity. Current Opinion in Chemical Engineering. 30, 42-52 (2020).
  9. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nature Reviews Genetics. 23 (8), 467-491 (2022).
  10. Duncombe, T. A., Tentori, A. M., Herr, A. E. Microfluidics: reframing biological enquiry. Nature reviews. Molecular cell biology. 16 (9), 554-567 (2015).
  11. Williams, M. J., et al. A low-cost, rapidly integrated debubbler (rid) module for microfluidic cell culture applications. Micromachines. 10 (6), 360 (2019).
  12. Ahmed, A., et al. Engineering fiber anisotropy within natural collagen hydrogels. American Journal of Physiology-Cell Physiology. 320 (6), C1112-C1124 (2021).
  13. Ahmed, A., et al. Microengineered 3D collagen gels with independently tunable fiber anisotropy and directionality. Advanced Materials Technologies. 6 (4), 2001186 (2021).
  14. Łach, A., Wnuk, A., Wójtowicz, A. K. Experimental models to study the functions of the blood-brain barrier. Bioengenharia. 10 (5), 519 (2023).
  15. McCloskey, M. C., et al. The Modular µSiM: A mass produced, rapidly assembled, and reconfigurable platform for the study of barrier tissue models in vitro. Advanced Healthcare Materials. 11 (18), 2200804 (2022).
  16. Mansouri, M., et al. The modular µsim reconfigured: integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Advanced Healthcare Materials. 11 (21), 2200802 (2022).
  17. Hudecz, D., et al. Modelling a human blood-brain barrier co-culture using an ultrathin silicon nitride membrane-based microfluidic device. International Journal of Molecular Sciences. 24 (6), 5624 (2023).
  18. Joshi, I. M., et al. Microengineering 3D Collagen Matrices with Tumor-Mimetic Gradients in Fiber Alignment. bioRxiv. , (2023).
  19. Hsu, M. C., et al. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications. Scientific Reports. 12 (1), 10769 (2022).
  20. Rogers, M. T., et al. A high-throughput microfluidic bilayer co-culture platform to study endothelial-pericyte interactions. Scientific reports. 11 (1), 12225 (2021).
  21. Wettschureck, N., Strilic, B., Offermanns, S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiological Reviews. 99 (3), 1467-1525 (2019).
  22. Wang, Y. I., Shuler, M. L. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab on a Chip. 18 (17), 2563-2574 (2018).
  23. Nayak, L., Lin, Z., Jain, M. K. 34;Go with the flow": how Krüppel-like factor 2 regulates the vasoprotective effects of shear stress. Antioxidants & Redox Signaling. 15 (5), 1449-1461 (2011).
  24. Satoh, T., et al. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system. Lab on a chip. 16 (12), 2339-2348 (2016).
  25. Abhyankar, V. V., Wu, M., Koh, C. Y., Hatch, A. V. A Reversibly sealed, easy access, modular (seam) microfluidic architecture to establish in vitro tissue interfaces. PLOS ONE. 11 (5), e0156341 (2016).
  26. Ahmed, A., et al. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication. 14 (3), 035019 (2022).
  27. Hasan, M. R., et al. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomedical Physics & Engineering Express. 4 (2), 025015 (2018).
  28. Ahmed, A., et al. Microengineering 3D collagen hydrogels with long-range fiber alignment. Journal of Visualized Experiments. 187, e64457 (2022).
check_url/pt/66090?article_type=t

Play Video

Citar este artigo
Mansouri, M., Hughes, A. R., Audi, L. A., Carter, A. E., Vidas, J. A., McGrath, J. L., Abhyankar, V. V. Transforming Static Barrier Tissue Models into Dynamic Microphysiological Systems. J. Vis. Exp. (204), e66090, doi:10.3791/66090 (2024).

View Video