Summary

Hsp104纯化,蛋白质Disaggregase

Published: September 30, 2011
doi:

Summary

在这里,我们描述一个高度活跃Hsp104,一个六聚AAA +从酵母中的蛋白质,其中夫妇ATP水解蛋白分解净化的协议。该计划利用从亲和纯化His6标签的​​构造<em> E。大肠杆菌</em>其次,His6标签去除TEV蛋白酶,体积排阻色谱阴离子交换层析。

Abstract

Hsp104是一个六聚AAA +蛋白1,从酵母,这夫妇ATP水解蛋白质分解2-10(图1)。这个活动赋予了两个关键的选择性优势。首先,由Hsp104无序聚集复性酵母生存的授权后,各种蛋白质的错误折叠强调,包括热休克3,5,11,12。其次,Hsp104交叉β-淀粉样纤维的重塑使酵母利用无数的朊病 ​​毒(感染性淀粉样)和水库作为一个有益的遗传表变异13-22。值得注意的是,Hsp104直接重塑preamyloid低聚物和淀粉样纤维,包括酵母朊蛋白Sup35 Ure2 23-30组成的。这淀粉样蛋白重塑的功能是专业方面的酵母Hsp104。的大肠杆菌大肠杆菌同源,ClpB,无法改造preamyloid低聚物或淀粉样纤维26,31,32。

Hsp104同源除外,令人困惑,动物王国的生活。事实上,无论是动物细胞中拥有任何酶系统,夫妻蛋白复性(而不是退化)的分类仍然是未知 33-35 。因此,我们和其他人提出,Hsp104可能会被视为一个与特定的蛋白质错误折叠成有毒的preamyloid低聚物和淀粉样纤维 4,7,23,36-38有关的各种神经退行性疾病的治疗剂开发。有没有直接目标与这些疾病有关的汇总物种的治疗。然而,Hsp104溶解毒性低聚物和淀粉样纤维的α-突触核蛋白,这是帕金森氏病23以及39的PrP淀粉样蛋白形式相连组成。更重要的是,Hsp104减少蛋白质聚集和改善帕金森氏病23和亨廷顿氏病38的老鼠模型的神经退行性疾病。理想的情况下,优化治疗和减少副作用,Hsp104将设计和potentiated有选择性地改造的核心问题4,7的疾病的具体聚集。然而,有限的结构和机理的了解如何Hsp104分解聚合结构和不相关的蛋白质的这样一个多样化的剧目挫败这些努力30,40-42。

要了解Hsp104的结构和机制,它是用最少的元件必须研究的纯蛋白质和重组其disaggregase活动。 Hsp104是一个102kDa蛋白与PI〜5.3,ADP或ATP,或在高蛋白质浓度在43-46核苷酸的情况下hexamerizes。在这里,我们描述了一个优化的协议, E的纯化高度活跃,稳定Hsp104 大肠杆菌E.使用大肠杆菌可以简化大规模生产,我们的方法可以进行快速,可靠地为众多Hsp104变种。我们的协议,增加Hsp104的纯度和简化的6个标签去除,相比以前的提纯方法从E. 大肠杆菌 47。此外,我们的协议是两个较近期的协议 26,48比更轻便和方便。

Protocol

1。对Hsp104的表达质粒在大肠杆菌中聘用为净化大肠杆菌 ,pPROEX HTB – Hsp104,包含的trc启动子的诱导 26控制下Hsp104开放阅读框。质粒产生的N -端他的6个标签,可删除TEV蛋白酶裂解Hsp104。转换成密码子优化E. pPROEX HTB – Hsp104 大肠杆菌 BL21 CodonPlus的RIL细胞(Stratagene公司,安捷伦科技公司)使用一个典型的细菌转化过程(例如按照制造商的指示)…

Discussion

时间轴:最大的Hsp104活动中,我们建议尽可能迅速完成整个净化计 ​​划。然而,纯化步骤,使一个苛刻的时间表,可能并不总是实际的。如果净化步骤是尽快地进行,时间从隔夜表达年底通过孵化2-4小时30 ° C是与TEV蛋白酶约9-11小时。一个潜在的地方,暂停以下TEV裂解步骤。如果绝对必要的,Hsp104可能会被冻结这一步后,上文所述(步骤5.2)的管理单元。解冻后和纯化Hsp104然后必须立即?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是支持由来自美国国立卫生研究院(5T32GM008275 22)和美国心脏协会predoctoral的奖学金(EAS)的赠款;化学生物学界面从美国国立卫生研究院(2T32GM071339 06A1)(MED)奖学金;和赠款,从国立卫生研究院(1DP2OD002177 – 01和NS067354 – 0110),埃利森医学基金会,比尔和梅林达盖茨基金会(JS)。

Materials

Name of the reagent Company Catalogue number
BL21-CodonPlus-RIL Competent Cells Stratagene, Agilent Technologies 230255
2XYT broth USB 75864
Complete, mini, EDTA-free protease inhibitor tablets Roche 1836170
Pepstatin A Sigma P4265
Ni-Sepharose 6 Fast Flow GE Healthcare 17-5318-02
Amicon Ultra-15 centrifugal filter units (MWCO 30,000) Millipore UFC903008
Resource Q – 6ml column GE Healthcare 17-1179-01
proTEV Protease Promega V6052
AcTEV Protease Invitrogen 12575015
Superose 6 10/300 GL GE Healthcare 17-5172-01
Hsp40 Assay Designs SPP-400
Hsp72 Assay Designs ADI-NSP-555

References

  1. Erzberger, J. P., Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct. 35, 93-114 (2006).
  2. Glover, J. R., Lindquist, S. Hsp104, Hsp70, and Hsp40: A Novel Chaperone System that Rescues Previously Aggregated Proteins. Cell. 94, 73-82 (1998).
  3. Parsell, D. A., Kowal, A. S., Singer, M. A., Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature. 372, 475-478 (1994).
  4. Vashist, S., Cushman, M., Shorter, J. Applying Hsp104 to protein-misfolding disorders. Biochem Cell Biol. 88, 1-13 (2010).
  5. Parsell, D. A., Sanchez, Y., Stitzel, J. D., Lindquist, S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature. 353, 270-273 (1991).
  6. Doyle, S. M., Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci. 34, 40-48 (2009).
  7. Shorter, J. Hsp104: a weapon to combat diverse neurodegenerative disorders. Neurosignals. 16, 63-74 (2008).
  8. Glover, J. R., Lum, R. Remodeling of protein aggregates by Hsp104. Protein Pept Lett. 16, 587-597 (2009).
  9. Mogk, A., Haslberger, T., Tessarz, P., Bukau, B. Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans. 36, 120-125 (2008).
  10. Grimminger-Marquardt, V., Lashuel, H. A. Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers. 93, 252-276 (2010).
  11. Sanchez, Y., Lindquist, S. L. HSP104 required for induced thermotolerance. Science. 248, 1112-1115 (1990).
  12. Sanchez, Y., Taulien, J., Borkovich, K. A., Lindquist, S. Hsp104 is required for tolerance to many forms of stress. Embo J. 11, 2357-2364 (1992).
  13. Alberti, S., Halfmann, R., King, O., Kapila, A., Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 137, 146-158 (2009).
  14. Halfmann, R., Alberti, S., Lindquist, S. Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol. 20, 125-1233 (2010).
  15. Shorter, J., Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat Rev Genet. 6, 435-450 (2005).
  16. True, H. L., Berlin, I., Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature. 431, 184-187 (2004).
  17. True, H. L., Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature. 407, 477-483 (2000).
  18. Tyedmers, J., Madariaga, M. L., Lindquist, S. Prion switching in response to environmental stress. PLoS Biol. 6, e294-e294 (2008).
  19. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science. 268, 880-884 (1995).
  20. Halfmann, R., Lindquist, S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science. 330, 629-632 (2010).
  21. Satpute-Krishnan, P., Langseth, S. X., Serio, T. R. Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol. 5, e24-e24 (2007).
  22. Sweeny, E. A., Shorter, J. Prion proteostasis: Hsp104 meets its supporting cast. Prion. 2, 135-140 (2008).
  23. Lo Bianco, C. Hsp104 antagonizes alpha-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. J Clin Invest. 118, 3087-3097 (2008).
  24. Narayanan, S., Walter, S., Reif, B. Yeast prion-protein, sup35, fibril formation proceeds by addition and substraction of oligomers. Chembiochem. 7, 757-765 (2006).
  25. Savistchenko, J., Krzewska, J., Fay, N., Melki, R. Molecular chaperones and the assembly of the prion Ure2p in vitro. J Biol Chem. 283, 15732-15739 (2008).
  26. Shorter, J., Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science. 304, 1793-1797 (2004).
  27. Shorter, J., Lindquist, S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol Cell. 23, 425-438 (2006).
  28. Shorter, J., Lindquist, S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. Embo J. 27, 2712-2724 (2008).
  29. Doyle, S. M. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol. 14, 114-122 (2007).
  30. Wendler, P. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell. 131, 1366-1377 (2007).
  31. Hinault, M. P. Stable alpha-synuclein oligomers strongly inhibit chaperone activity of the Hsp70 system by weak interactions with J-domain co-chaperones. J Biol Chem. 285, 38173-38182 (2010).
  32. Tipton, K. A., Verges, K. J., Weissman, J. S. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol Cell. 32, 584-591 (2008).
  33. Bieschke, J., Cohen, E., Murray, A., Dillin, A., Kelly, J. W. A kinetic assessment of the C. elegans amyloid disaggregation activity enables uncoupling of disassembly and proteolysis. Protein Sci1. 8, 2231-2241 (2009).
  34. Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W., Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science. 313, 1604-1610 (2006).
  35. Cohen, E. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell. 139, 1157-1169 (2009).
  36. Cushman, M., Johnson, B. S., King, O. D., Gitler, A. D., Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci. 23, 1191-11201 (2010).
  37. Carmichael, J. Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington’s disease. Proc Natl Acad Sci. 97, 9701-9705 (2000).
  38. Vacher, C., Garcia-Oroz, L., Rubinsztein, D. C. Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington’s disease. Hum Mol Genet. 14, 3425-3433 (2005).
  39. Liu, Y. H. Heat Shock Protein 104 Inhibited the Fibrillization of Prion Peptide 106-126 and Disassembled Prion peptide 106-126 Fibrils in vitro. Int J Biochem Cell Biol. , (2011).
  40. Wendler, P., Saibil, H. R. Cryo electron microscopy structures of Hsp100 proteins: crowbars in or out. Biochem Cell Biol. 88, 89-96 (2010).
  41. Wendler, P. Motor mechanism for protein threading through Hsp104. Mol Cell. 34, 81-92 (2009).
  42. Lee, S., Sielaff, B., Lee, J., Tsai, F. T. CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc Natl Acad Sci. 107, 8135-8140 (2010).
  43. Parsell, D. A., Kowal, A. S., Lindquist, S. Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J Biol Chem. 269, 4480-4487 (1994).
  44. Schirmer, E. C., Queitsch, C., Kowal, A. S., Parsell, D. A., Lindquist, S. The ATPase activity of Hsp104, effects of environmental conditions and mutations. J Biol Chem. 273, 15546-15552 (1998).
  45. Schirmer, E. C., Ware, D. M., Queitsch, C., Kowal, A. S., Lindquist, S. L. Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci. 98, 914-919 (2001).
  46. Hattendorf, D. A., Lindquist, S. L. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J. 21, 12-21 (2002).
  47. Schirmer, E. C., Lindquist, S. Purification and properties of Hsp104 from yeast. Methods Enzymol. 290, 430-444 (1998).
  48. Hattendorf, D. A., Lindquist, S. L. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Proc Natl Acad Sci. 99, 2732-2737 (2002).
  49. Lum, R., Niggemann, M., Glover, J. R. Peptide and protein binding in the axial channel of Hsp104. Insights into the mechanism of protein unfolding. J Biol Chem. 283, 30139-30150 (2008).
  50. Lum, R., Tkach, J. M., Vierling, E., Glover, J. R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem. 279, 29139-29146 (2004).
  51. Tessarz, P., Mogk, A., Bukau, B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol Microbiol. 68, 87-97 (2008).
  52. Weibezahn, J. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell. 119, 653-665 (2004).
check_url/3190?article_type=t

Play Video

Cite This Article
Sweeny, E. A., DeSantis, M. E., Shorter, J. Purification of Hsp104, a Protein Disaggregase. J. Vis. Exp. (55), e3190, doi:10.3791/3190 (2011).

View Video