Summary

小鼠气管基底细胞和粘膜下腺体的导管细胞分离

Published: September 14, 2012
doi:

Summary

在这里,我们展示了我们的协议,用于隔离的基础和粘膜下腺体导管细胞从小鼠气管。我们还表明,该方法的干细胞注射到背鼠标脂肪垫,以创建一个<em在体内</em>模式,粘膜下腺体的再生。

Abstract

大航空公司直接与环境接触,因此容易受到伤害的毒素和传染性我们呼吸的1。大航空公司,因此需要一个有效的修复机制来保护我们的身体。这种修复过程发生在呼吸道的干细胞,这些干细胞气道隔离理解的修复和再生的机制是非常重要的。同样重要的是理解异常修复,可导致气道疾病的2。该方法的目标是从小鼠气管粘膜下腺导管分离出一种新的干细胞群体,将这些细胞在体外体内模型系统,以确定的修复和再生机制的粘膜下腺体3。生产表明,可用于分离和检测从大的气道3中的管道和基底的干细胞的方法,这将允许我们研究疾病,如囊性纤维化,哮喘和慢性阻塞性肺疾病的气道。目前,有没有隔离的粘膜下腺体导管细胞的方法,也没有在体内模型研究粘膜下腺体的再生。

Protocol

纲要的步骤 1。解剖气管 2。清洁气管和切割 3。酶消化,加工成单细胞悬液 4。染色流式细胞仪和分选 5。排序细胞在体内和体外模型处理 1。解剖气管安乐死鼠标0.1 mg/0.2 cc的戊巴比妥钠腹膜内注射。 剖开腹壁,移动侧的肠子暴露腹主动脉,然后?…

Discussion

这种技术来隔离气道管和基底细胞重要的是,提高我们对气道的修复和再生,气道疾病。这里描述的技术包括几个关键的步骤。第一是优化酶消化期间。第二个是创造的单细胞悬液通过串行逐步提高计针,以防止传代细胞剪切,但分手的细胞团块。第三个是FACS分析,并适当的抗体的细胞的门控。

由于一些酶带钢表面抗原表位,像ITGA6和NGFR,一个可能的修改是改变内切酶酶切?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢宽广的干细胞研究中心FACS,尤其要感谢他们的帮助杰西卡·斯科尔斯和Felicia科德雷亚与细胞分选。这项工作是由CIRM RN2-00904-1,K08 HL074229,美国胸科学会/慢性阻塞性肺病基金会ATS-06-065,值得关注的基金会,加州大学洛杉矶分校琼森综合癌症中心胸腔肿瘤计画/肺癌SPORE大学,加州癌症研究协调委员会和格温哈森樱桃纪念实验室(BG)。

Materials

Name of the reagent Company Catalog number
Complete medium 10:
DMEM-F-12 , 50/50, 1X)
Mediatech 15-090-CV
Hepes (15 mM) Invitrogen 15630
Sodium bicarbonate (3.6mM or 0.03%) Invitrogen 25080
L-glutamine (4 mM) Mediatech 25-005-Cl
Penicillin (100 U/ml) Mediatech 30-001-CI
Streptomycin (100 μg/m) Mediatech 30-001-CI
Amphotericin B (0.25 μg/ ml) Lonza 17-836R
Insulin (10 μg/ml) Sigma I6634
Transferrin (5 μg/ml) Sigma T1147
Cholera toxin (0.1 μg/ml) Sigma C8052
Epidermal Growth Factor (25 ng/ml) BD 354001
Bovine Pituitary Extract (30 μg/ml) Invitrogen 13028-014
Fetal Bovine Serum (5%) Fisher SH3008803HI
Retinoic acid (0.05 μM) Sigma R2625
Growth Factor Reduced Matrigel BD 354230

Table 1. Complete media components.

Name of the reagent Company Catalogue number Comments
Pronase Roche 10165921001 Used at 0.15%:
-o/n at 4 °C digestion to isolate total tracheal cells (for ALI culture)
-4 hr digestion 4 °C to isolate SMG
Dispase BD Biosciences 354235 Used at 16 Units: 30 min at RT
DNase I Sigma DN25 Used at 0.5 mg/ml:
20-30 min at RT

Table 2. Enzymes used for enzymatic digestion of the trachea.

References

  1. Bartlett, J. A., Fischer, A. J., McCray, P. B. Innate immune functions of the airway epithelium. Contrib. Microbiol. 15, 147-163 (2008).
  2. Finkbeiner, W. E. Physiology and pathology of tracheobronchial glands. Respir. Physiol. 118, 77-83 (1999).
  3. Hegab, A. E. A Novel Stem/Progenitor Cell Population from Murine Tracheal Submucosal Gland Ducts with Multipotent Regenerative Potential. Stem Cells. , (2011).
  4. Jeffery, P. K. Morphologic features of airway surface epithelial cells and glands. Am. Rev. Respir. Dis. 128, S14-S20 (1983).
  5. Rock, J. R. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. U.S.A. 106, 12771-12775 (2009).
  6. Goldstein, A. S. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl. Acad. Sci. U.S.A. 105, 20882-20887 (2008).
  7. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255, 1707-1710 (1992).
  8. McQualter, J. L., Yuen, K., Williams, B., Bertoncello, I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl. Acad. Sci. U.S.A. 107, 1414-1419 (2010).
  9. Inayama, Y. In vitro and in vivo growth and differentiation of clones of tracheal basal cells. Am. J. Pathol. 134, 539-549 (1989).
  10. You, Y., Richer, E. J., Huang, T., Brody, S. L. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am. J. Physiol. Lung. Cell. Mol. Physiol. 283, L1315-L1321 (2002).
  11. Wu, X., Peters-Hall, J. R., Bose, S., Pena, M. T., Rose, M. C. Human Bronchial Epithelial Cells Differentiate to 3D Glandular Acini on Basement Membrane Matrix. Am. J. Respir. Cell Mol. Biol. , (2010).
  12. Ooi, A. T. Presence of a putative tumor-initiating progenitor cell population predicts poor prognosis in smokers with non-small cell lung cancer. Cancer Res. 70, 6639-6648 (2010).

Play Video

Cite This Article
Hegab, A. E., Luan Ha, V., Attiga, Y. S., Nickerson, D. W., Gomperts, B. N. Isolation of Basal Cells and Submucosal Gland Duct Cells from Mouse Trachea. J. Vis. Exp. (67), e3731, doi:10.3791/3731 (2012).

View Video