Summary

一个从人体细胞分泌蛋白生产的方便,一般的表达平台

Published: July 31, 2012
doi:

Summary

在人类后基因组时代,在本机构的重组蛋白的结构,功能和治疗的研究和发展是至关重要的。在这里,我们描述了测试和大规模的蛋白质在人类胚胎肾细​​胞293T,可用于生产各种重组蛋白表达系统。

Abstract

重组蛋白在细菌中表达,通常大肠杆菌大肠杆菌 ,一直毫克的蛋白质数量表达的最成功的战略。然而,原核主机通常是不为人类,病毒或真核蛋白质由于外国高分子毒性,在蛋白质折叠机制的差异,或因缺乏特别合作或翻译后的修改,在细菌的适当表达。基于酵母( 毕赤酵母酵母 )1,2,杆状病毒感染的昆虫(S.秋行军虫或 T )细胞3,和无细胞体外翻译系统的表达系统2,4已被成功地用于生产哺乳动物蛋白质。直观,最匹配的是,使用哺乳动物的主机,以确保包含正确的翻译后修饰的重组蛋白的生产。一些哺乳动物细胞株人类胚胎小子(滋肾(HEK)293,C V-1细胞 O rigin携带 S V40 larget T抗原(COS)中国仓鼠卵巢(CHO),和其他人)已成功地利用过度毫克数量的人体蛋白质数量5-9。然而,使用哺乳动物细胞中的优势往往成本较高,专业实验室设备的需求,降低蛋白质产量,和漫长的时间发展稳定表达细胞株的反击。提高产量和生产蛋白质的速度,同时保持成本低,是许多学术和商业实验室的主要因素。

在这里,我们描述了时间和成本效益,由两部分组成,附着HEK 293T细胞分泌的人类蛋白质表达过程。这个系统是能够生产微克到毫克数量的功能蛋白质结构,生物物理和生物化学研究。第一部分,是产生多个感兴趣的基因结构并行和瞬时转成小规模的附着的HEK 293T细胞。重组蛋白分泌到细胞培养液中的检测和分析,进行印迹分析,使用市售的抗体对矢量编码的蛋白质纯化标签指示。随后,适合大规模蛋白质生产结构瞬时转染使用聚乙烯亚胺(PEI)在10层的细胞工厂。成升体积的条件培养基中分泌蛋白集中到管理大量使用切向流过滤,净化,抗HA的亲和层析。这个平台的效用证明毫克量的细胞因子,细胞因子受体,细胞表面的受体,内在的制约因素,与病毒糖蛋白的表达能力。这种方法也被成功地用于三聚ebolavirus糖5,10结构的决心。

<p c姑娘=的“jove_content”的结论>,此平台提供易于使用,速度和可扩展性,同时最大限度地提高蛋白质的质量和功能。此外,没有额外的设备,比标准培养箱二氧化碳培养箱 ,是必需的。这个过程可能会迅速扩大到更复杂的系统,如蛋白质复合物,抗原和抗体,疫苗生产的病毒样颗粒,或生产困难的细胞株转导的腺病毒或慢病毒表达。

Protocol

1。准备工作 – 构造和细胞培养在开始的协议之前,应该感兴趣的基因密码子优化,在哺乳动物细胞中表达,并克隆到一个合适的表达载体,利用标准的分子生物学技术。为了确保最高的成功表达的机会,应产生多个感兴趣的基因变种。许多哺乳动物表达载体可商业化,并有各种净化标签(多聚组氨酸,血凝素,链,晕标签,谷胱甘肽S-转移,等等)。我们更倾向于使用pDISPLAY?…

Discussion

10层的细胞工厂生产毫克的蛋白质数量的有效容器。使用超过其他传统的船只,如滚瓶,摇瓶或微调瓶,电池工厂的一个主要优点是,它们不需要任何额外的实验室设备的采购。一个标准的二氧化碳培养箱(6.0立方英尺)轻松容纳4个10层的细胞工厂( 图2)。此外,这些船只需要较少的劳动比菜,瓶或滚瓶细胞和蛋白质的产生和空间;一个10层的细胞工厂,相当于使用7.5定期滚?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由安大略省的艾滋病毒治疗网络研究工作津贴(的ROG-G645)和加拿大健康研究的新研究者奖(的MSH-113554)研究院JEL和多伦多大学的奖学金支持HA,FCA和纪委。笔者想感谢在斯克里普斯研究所(拉霍亚加州)马妮福斯科,Dafna先生Abelson和埃里卡Ollmann萨费尔博士提供细胞,ebolavirus; GP表达载体和一般建议。

Materials

Name of reagent Company Catalogue number Comments
Alkaline phosphatase (BCIP/NBT) liquid substrate solution Sigma B6404  
Antibiotic/Antimycotic, 100X Invitrogen 15240062  
Anti-HA affinity matrix, clone 3F10 Roche 1815016  
Anti-HA murine mAb, clone 16B12 Covance MMS-101P  
Cell culture flask, T75 cm2 tissue culture treated Corning 430641  
Cell culture flask, T225 cm2 tissue culture treated Corning 431082  
Cell culture plates,6-well tissue culture treated Corning 3516  
Cell factory, 10-layer CellSTACK Corning 3312  
Centramate Omega 5K Cassette Pall OS005C12  
Centramate Omega 30K Cassette Pall OS030C12  
Chromatography glass column, 1.0×10 cm Kontes 4204001010  
Ciprofloxacin Sigma 17850  
CO2      
Dulbecco’s modified Eagle’s media (DMEM) Sigma D5796  
Fetal bovine serum (FBS), heat inactivated Invitrogen 12484-028  
FuGENE HD transfection reagent Promega 4709691001  
GeneJuice transfection reagent EMD/Merck 70967-6  
Glycine Sigma G8898  
Goat anti-mouse IgG F(ab’)2 alkaline Thermo Scientific 31324  
phosphatase-conjugated antibody      
Hemagglutinin (HA) peptide, 100 mg Genscript custom synthesis  
(sequence: YPYDVPDYA; 95% purity)      
HEK 293T cells ATCC CRL-11268  
Household bleach (4% w/v sodium hypochlorite) various brands are available    
Immobilon-P PVDF membrane Millipore IPVH07850  
MiniPrep plasmid purification kit, PureLink Quick Invitrogen K2100-11  
MaxiPrep plasmid purification kit, PureLink HiPure Invitrogen K2100-07  
NaN3 Sigma S8032  
pDISPLAY expression vector Invitrogen V660-20  
Penicillin/streptomycin (pen/strep), 100X Invitrogen 15140-122  
Phosphate-buffered saline (PBS), sterile 1X Sigma D8537  
Polyethyleneimine (PEI), linear 25 kDa Polyscience 23966  
Skim milk dry powder Carnation    
Stericup-GP PES vacuum filtration unit, Millipore SCGPU05RE  
0.22 μm, 500 ml capacity      
Trypan blue Invitrogen 15250061  
Trypsin-EDTA, 0.05% (w/v) Invitrogen 25300-054  
Tween-20 Sigma P7949  
Valproic acid Sigma P4543  
Centramate tangential flow system Pall    
CO2 humidified incubator, standard 6.0 cu. ft. various brands are available    
Electrophoresis and transfer unit various brands are available    
Incubator, 37 °C various brands are available    

References

  1. Celik, E., Calik, P. Production of recombinant proteins by yeast cells. Biotechnol. Adv. , (2011).
  2. Yokoyama, S. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7, 39-43 (2003).
  3. Nettleship, J. E., Assenberg, R., Diprose, J. M., Rahman-Huq, N., Owens, R. J. Recent advances in the production of proteins in insect and mammalian cells for structural biology. J. Struct. Biol. 172, 55-65 (2010).
  4. Carlson, E. D., Gan, R., Hodgman, C. E., Jewett, M. C. Cell-free protein synthesis: Applications come of age. Biotechnol. Adv. , (2011).
  5. Lee, J. E. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 454, 177-182 (2008).
  6. Bowden, T. A. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat. Struct. Mol. Biol. 15, 567-572 (2008).
  7. Evans, M. J., Hartman, S. L., Wolff, D. W., Rollins, S. A., Squinto, S. P. Rapid expression of an anti-human C5 chimeric Fab utilizing a vector that replicates in COS and 293 cells. J. Immunol. Methods. 184, 123-138 (1995).
  8. Ye, J. High-level protein expression in scalable CHO transient transfection. Biotechnol. Bioeng. 103, 542-551 (2009).
  9. Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 22, 1393-1398 (2004).
  10. Lee, J. E., Fusco, M. H., Hessell, A. J., Burton, D. R., Saphire, E. O. Techniques and tactics used in determining the structure of trimeric, prefusion Ebola virus GP. Acta Cryst. 65, 1162-1180 (2009).
  11. Aricescu, A. R. Eukaryotic expression: developments for structural proteomics. Acta. Crystallogr. D Biol. Crystallogr. 62, 1114-1124 (2006).
  12. Aricescu, A. R., Lu, W., Jones, E. Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta. Crystallogr. D Biol. Crystallogr. D62, 1243-1250 (2006).
  13. Chang, V. T. Glycoprotein structural genomics: solving the glycosylation problem. Structure. 15, 267-273 (2007).
  14. Lee, J. E., Fusco, M. H., Saphire, E. O. An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nature Protocols. 4, 592-604 (2009).
  15. Nettleship, J. E., Rahman-Huq, N., Owens, R. J. The production of glycoproteins by transient expression in Mammalian cells. Methods Mol. Biol. 498, 245-263 (2009).
  16. Neil, S. J., Zang, T., Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 451, 425-430 (2008).
  17. Nakamura, Y. Heterodimerization of the IL-2 receptor beta- and gamma-chain cytoplasmic domains is required for signalling. Nature. 369, 330-333 (1994).
  18. Wang, X., Rickert, M., Garcia, K. C. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science. 310, 1159-1163 (2005).
check_url/4041?article_type=t

Play Video

Cite This Article
Aydin, H., Azimi, F. C., Cook, J. D., Lee, J. E. A Convenient and General Expression Platform for the Production of Secreted Proteins from Human Cells. J. Vis. Exp. (65), e4041, doi:10.3791/4041 (2012).

View Video