Summary

의미 심장한 복잡한 두뇌 지형에 대한 Wholemount Immunohistochemistry

Published: April 05, 2012
doi:

Summary

신경 회로는 topographically 특정 분자 프로필과 기능적 구획으로 구성되어 있습니다. 여기서는 다양한 wholemount immunohistochemical 염색법 접근 방식을 사용하여 글로벌 뇌의 지형을 드러내는을위한 실용적이고 기술적인 단계를 제공합니다. 우리는 잘 이해 cytoarchitecture과 소뇌의 회로를 사용하는 방법의 유틸리티를 보여줍니다.

Abstract

소뇌의 반복이고 잘 이해 셀룰러 아키텍처는 뇌의 지형을 탐험하는 데 이상적인 모델 시스템을 확인합니다. 그것의 비교적 균일한 cytoarchitecture 밑에는 유전자 및 단백질 표현의 parasagittal 도메인의 복잡한 배열입니다. 소뇌의 분자 compartmentalization는 수입 성의 섬유의 해부 학적 및 기능적 조직 피지만. 완전히 소뇌 조직의 복잡도를 감사하기 위해 우리는 이전에 마우스 소뇌의 patterning 결함의 높은 처리량 분석을위한 wholemount 염색법 방식을 정제. 이 프로토콜은 상세히 시약, 도구 및 성공적 wholemount immunostaining를 사용하여 성인 마우스 소뇌에서 단백질 발현 패턴을 표시하는 방법으로 유용 실용적인 단계를 설명합니다. 단계는 여기에서 뇌의 미세 지형이 그 드러날 수있는 방법의 예로 zebrinII / aldolaseC의 표현을 사용하여이 방법의 유틸리티를 입증 강조네이티브 입체 형태. 또한 설명은 분자 지형의 비교 연구를위한 수입 성의 전망 및 대형 cerebella의 단백질 표현의 시각화 수 있도록 프로토콜에 adaptations 있습니다. 이러한 응용 프로그램을 설명하기 위해 쥐의 소뇌의 수입 성의 염색법의 데이터가 포함되어 있습니다.

Protocol

1. 동물 재관류와 소뇌의 해부 단백질에 따라 관류는 성공적인 염색법의 1,2에 필수적인 것입니다. Transcardiac 재관류는 anesthetics의 적절한 사용을 필요로 침입이 아닌 생존 절차입니다. 올바른 교육 기관 승인 및 IACUC 승인 모든 절차를 시도하기 전에 필요합니다. 항상 실험적인 요구 사항을 식별하고 올바른 교육을 습득에 도움을받을 기관의 수의사와 상담하는 것이 좋습니다. 절차…

Discussion

우리는 개발과 성인 두뇌의 의미 심장한 단백질 발현을위한 다목적 immunohistochemical 접근법을 사용해서 성공 wholemount의 염색법에 필요한 기술적인 세부 사항을 설명했습니다. 이 접근법을 사용하여 복잡한 분자 발현 패턴 분석 수 있으며 뇌 지형이 힘드는 시간이 소요되는 조직 sectioning 절차없이 평가.

이 프로토콜은 성인 1,2,8,9 및 조기 출생 후의 마우스 소뇌 10,11…

Disclosures

The authors have nothing to disclose.

Acknowledgements

RVS는 예시바 대학 의과 알버트 아인슈타인 대학에서 창업 자금을 새로운 조사에 의해 지원됩니다.

Materials

Materials Function in protocol
Perfusion pump (Fisher Scientific/13-876-2) Allows for consistent and slow perfusion.
Sharp-tip Scissors (FST/14081-08) General use in perfusion and dissection.
Blunt-tip Forceps (FST/91100-12) To stabilize the heart for insertion of the perfusion needle.
Forceps (FST by Dumont AA/11210-10) For use during dissection of the brain from the skull and to separate the cerebellum from the rest of the brain. These are essential because they have a slightly rounded tip that helps minimize damage to the cerebellum during dissection.
Nutator (Fisher Scientific) Used to keep tissue in motion during incubation periods. 
1.5 mL tube (Sarstedt/Screw Cap Micro Tube) All steps of the histochemistry protocol take place in these microtubes. The rounded bottom ensures that the cerebellum stays in motion. 
Perforated spoon (FST/10370-17) Used to keep wholemounts in the microtubes while gently decanting out the spent solution.
Leica MZ16 FA microscope Used to examine wholemount staining.
Leica DFC3000 FX camera Used to capture wholemount images.

Table 1.

Example calendar for a typical wholemount experiment
Day 1 Dent’s fix, room temperature, 8 hrs Dent’s bleach, 4°C, overnight
Day 2 100% MeOH, room temperature, 2x, 30 min each 100% MeOH, Freeze/thaw,
4x, 30 min/15 min
100% MeOH, -80°C, overnight
Day 3 50% MeOH/50% PBS, room temperature, 60-90 min 15% MeOH/ 85% PBS, room temperature, 60-90 min 100% PBS, room temperature, 60-90 min 10μg/mL Proteinase K in PBS, room temperature, 2-3 min 100% PBS, room temperature, 3x, 10 min each PMT, 4°C, overnight
Day 4-5 PMT + 1° antibody + 5% DMSO, 4°C, 48 hrs
Day 6 PMT, 4°C, 2-3x, 2-3 hrs each PMT + 2° antibody + 5% DMSO, 4°C, 24 hours (Or begin amplification steps with ABC complex)
Day 7 PMT, 4°C, 2-3x, 2-3 hrs each PBT, room temperature, 2 hrs Incubate in fresh DAB in PBS until optimal staining is visualized

Table 2.

Recipes (*=prepare fresh every time)
PBS (phosphate buffered saline) 0.1M phosphate buffered saline in deionized water. pH 7.2 (Sigma tablets; P4417)
PFA (Paraformaldehyde) Made and stored frozen as a 20% solution and then diluted to 4% in PBS for the working solution (Fisher Scientific; T353)
Dent’s Fixative3* 4 parts methanol
1 part dimethylsulfoxide (DMSO; Fisher Scientific; D159-4)
Dent’s Bleach3* 4 parts methanol
1 part dimethylsulfoxide (DMSO; Fisher Scientific; D159-4)
1 part 30% hydrogen peroxide
Enzymatic Digestion 10 μg/ml of Proteinase K (Roche Diagnostics; 03115828001) in PBS.
PBST PBS containing:
0.1% Tween-20 (Fisher Scientific, BP337; Triton can also be used in place of Tween-20 in all instances.)
PMT25* PBS containing:
2% nonfat skim milk powder (Carnation preferred)
0.1% Tween-20 (Fisher Scientific; BP337)
PBT25* PBS containing:
0.2% bovine serum albumin (Sigma; B9001S)
0.1% Tween-20 (Fisher Scientific; BP337)
DAB* Dissolve one 10-mg tablet of 3,3-diaminobenzidine (Sigma-Aldrich; D5905) in 40 ml of PBS. Add 10 μl of 30% hydrogen peroxide to initiate reaction).
ABC Complex Solution Vectastain kit (Vector laboratories, Inc; PK-4000)

Table 3.

References

  1. Sillitoe, R. V., Hawkes, R. Whole-mount Immunohistochemistry: A high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235-244 (2002).
  2. Kim, S. -. H., Che, P., Chung, S. -. H., Doorn, D., Hoy, M., Larouche, M., Marzban, H., Sarna, J., Zahedi, S., Hawkes, R. Whole-Mount Immunohistochemistry of the Brain. Current Protocols in Neuroscience. , (2006).
  3. Dent, J. A., Polson, A. G., Klymkowsky, M. W. A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development. 105, 61-74 (1989).
  4. Sillitoe, R. V., Malz, C. R., Rockland, K., Hawkes, R. Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in Macaca mulatta and Tupaia belangeri. J. Anat. 204, 257-269 (2004).
  5. Ozol, K., Hayden, J. M., Oberdick, J., Hawkes, R. Transverse zones in the vermis of the mouse cerebellum. J. Comp. Neurol. 412, 95-111 (1999).
  6. Apps, R., Hawkes, R. Cerebellar cortical organization: a one-map hypothesis. Nat. Rev. Neurosci. 10, 670-681 (2009).
  7. Reeber, S. L., Sillitoe, R. V. Patterned expression of a cocaine- and amphetamine-regulated transcript peptide reveals complex circuit topography in the rodent cerebellar cortex. J. Comp. Neurol. 519, 1781-1796 (2011).
  8. Sarna, J. R., Marzban, H., Watanabe, M., Hawkes, R. Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J. Comp. Neurol. 496, 303-313 (2006).
  9. Demilly, A., Reeber, S. L., Gebre, S. A., Sillitoe, R. V. Neurofilament heavy chain expression reveals a unique parasagittal stripe topography in the mouse cerebellum. Cerebellum. 10, 409-421 (2011).
  10. Larouche, M., Hawkes, R. From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum. 5, 77-88 (2006).
  11. Marzban, H., Chung, S., Watanabe, M., Hawkes, R. Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J. Comp. Neurol. 502, 857-871 (2007).
  12. Blank, M. C., Grinberg, I., Aryee, E., Laliberte, C., Chizhikov, V. V., Henkelman, R. M., Millen, K. J. Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development. 138, 1207-1216 (2011).
  13. Sawada, K., Sakata-Haga, H., Fukui, Y. Alternating array of tyrosine hydroxylase and heat shock protein 25 immunopositive Purkinje cell stripes in zebrin II-defined transverse zone of the cerebellum of rolling mouse. Nagoya. Brain Res. 1343, 46-53 (2010).
  14. Sawada, K., Fukui, Y., Hawkes, R. Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: Analysis by whole mount immunohistochemistry. Brain Res. 1222, 106-117 (2008).
  15. Marzban, H., Hawkes, R. On the architecture of the posterior zone of the cerebellum. Cerebellum. 10, 422-434 (2011).
  16. Pakan, J. M., Graham, D. J., Wylie, D. R. Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum. J. Comp. Neurol. 518, 175-198 (2010).
  17. Iwaniuk, A. N., Marzban, H., Pakan, J. M., Watanabe, M., Hawkes, R., Wylie, D. R. Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase C beta 4. J. Chem. Neuroanat. 37, 55-63 (2009).
  18. Sarna, J. R., Larouche, M., Marzban, H., Sillitoe, R. V., Rancourt, D. E., Hawkes, R. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J. Comp. Neurol. 456, 279-291 (2003).
  19. Sarna, J. R., Hawkes, R. Patterned Purkinje cell loss in the ataxic sticky mouse. Eur. J. Neurosci. 34, 79-86 (2011).
  20. El-Bizri, N., Guignabert, C., Wang, L., Cheng, A., Stankunas, K., Chang, C. P., Mishina, Y., Rabinovitch, M. SM22alpha-targeted deletion of bone morphogenetic protein receptor 1A in mice impairs cardiac and vascular development, and influences organogenesis. Development. 135, 2981-2991 (2008).
  21. Mondrinos, M. J., Koutzaki, S., Lelkes, P. I., Finck, C. M. A tissue-engineered model of fetal distal lung tissue. Am. J. Physiol. Lung Cell Mol. Physiol. 293, 639-650 (2007).
  22. Coppola, E., Rallu, M., Richard, J., Dufour, S., Riethmacher, D., Guillemot, F., Goridis, C., Brunet, J. F. Epibranchial ganglia orchestrate the development of the cranial neurogenic crest. Proc. Nat. Acad. Sci. 107, 2066-2071 (2010).
  23. Kubilus, J. K., Linsenmayer, T. F. Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2. Dev. Biol. 344, 172-184 (2010).
  24. Reeber, S. L., Gebre, S. A., Sillitoe, R. V. Fluorescence mapping of afferent topography in three dimensions. Brain Struct. Funct. 216, 159-169 (2011).
  25. Davis, C. A. Whole-mount immunohistochemistry. Methods Enzymol. 225, 502-516 (1993).
check_url/4042?article_type=t

Play Video

Cite This Article
White, J. J., Reeber, S. L., Hawkes, R., Sillitoe, R. V. Wholemount Immunohistochemistry for Revealing Complex Brain Topography. J. Vis. Exp. (62), e4042, doi:10.3791/4042 (2012).

View Video