Summary

三维细胞培养模式的测量肿瘤细胞浸润间质流体流动的影响

Published: July 25, 2012
doi:

Summary

在实体肿瘤间质流体流动升高,可以调节肿瘤细胞的侵袭。在这里,我们描述了技术应用嵌入在一个矩阵的细胞间质流体流动,然后测量其细胞浸润的影响。这种技术可以很容易地适应学习其他系统。

Abstract

大多数实体肿瘤的生长和发展依赖于初始变换的癌细胞,他们的反应基质的相关信号在肿瘤微环境1。此前,在肿瘤微环境的研究主要集中在肿瘤基质的相互作用1-2。然而,肿瘤微环境,还包括各种生物物理力量,其影响仍然知之甚少。这些部队是肿瘤生长的生物力学的后果,导致基因表达的变化,细胞分裂,分化和入侵3。矩阵密度4,5-6,刚度和结构6-7,组织间液压力8,8间质流体流动都改变在癌症的发展。

在肿瘤间质流体流动特别是高于正常组织8-10。估计间质液FLOW速度进行了测量,发现是在0.1-3微米S -1的范围内,根据肿瘤大小和分化9,11。这是由于肿瘤诱导的血管生成和血管通透性增加12所造成的升高间质流体压力。间质流体流动已被证明能增加入侵的癌细胞13-14血管成纤维细胞和平滑肌细胞15。这次入侵可能是由于自体细胞趋化细胞周围建立3 – D 16的梯度或增加15基质金属蛋白酶(MMP)的表达,分泌趋化因子和细胞粘附分子表达17。然而,细胞感受到流体流动的机制,不能很好地理解。此外,改变肿瘤细胞的行为,间质流体流动的调节其他细胞在肿瘤微环境的活动。它与(一)驾驶的成纤维细胞分化成肿瘤促进myofibr州18,(B)抗原的搬运和其他可溶性因子,淋巴结肿大19,(三)调节淋巴管内皮细胞形态20。

这里介绍的技术对体外细胞间质流体流动和量化入侵( 图1)的影响。这种方法已经公布在基质和癌细胞侵袭13日至15日,17多个研究测量流体流量的影响。通过改变基质组成,细胞类型和细胞浓度,此方法可以适用于其他疾病和生理系统的研究侵袭,分化,增殖,基因表达,如细胞过程间流动的影响。

Protocol

1。含量的设置冰在4°C(约2小时),解冻的基底膜小等分(<500μL)。 准备凝胶配方(看到表中的例子卷以下):10倍PBS(总体积的1倍),1N钠氢(相当于0.023补充胶原蛋白的量,或每的胶原蛋白制造商的建议,如适用),基底膜和胶原键入我来终浓度为1毫克/毫升和1.3毫克/毫升(可用于其他基质配方,根据细胞类型和实验)。 例如凝胶配方…

Discussion

在这里,我们所描述的量化对肿瘤细胞浸润间流动的影响,使用一个3-D矩阵嵌入细胞内的细胞培养插入方法。这和其他类似的方法已被用来研究多种细胞类型,13日至15日,17间流动的影响。我们的做法,部分模仿使用类型的肿瘤基质微环境,我胶原和基底膜含有蛋白质发现在基底膜上皮组织和周围基质21-22。这个系统是相对容易的设置了,简单,更具成本比大多数微流体装置,用?…

Disclosures

The authors have nothing to disclose.

Materials

Name of the reagent Company Catalogue number Comments
Collagen (Rat Tail) BD 354236 Keep sterile
Millicell cell culture insert Millipore PI8P01250 8 μm pore diameter, polycarbonate membrane
Matrigel BD 354234 Keep sterile
PBS Sigma Aldrich 100M-8202 10x for preparing gel solution, 1x for washing steps
Sodium Hydroxide, 1.0N Solution Sigma Aldrich S2770 Keep sterile
DMEM 1X CellGro 10-013-CV Keep sterile
Fetal Bovine Serum Atlanta Biologicals 511150 Keep sterile
Penicillin Streptomycin CellGro 30002CI Keep sterile
Triton X-100 Sigma Aldrich X100-500 ml 0.5% in PBS
Paraformaldehyde Fisher Scientific 04042-500 4% in PBS
Deionized Water     Keep sterile
4′,6-diaminido-2-phenylindole (DAPI) MP Biomedicals 0215757401 1 mg/ml stock solution
Mounting Solution Thermo Scientific TA-030-FM  
Trypsin-EDTA CellGro 25-052-CI Keep sterile

References

  1. Cichon, M. A. Microenvironmental influences that drive progression from benign breast disease to invasive breast cancer. J. Mammary Gland. Biol. Neoplasia. 15, 389-3897 (2010).
  2. Proia, D. A., Kuperwasser, C. Stroma: tumor agonist or antagonist. Cell Cycle. 4, 1022-1025 (2005).
  3. Dvorak, H. F. Tumor microenvironment and progression. J .Surg. Oncol. 103, 468-474 (2011).
  4. Provenzano, P. P. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).
  5. Engler, A. J. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677-689 (2006).
  6. Paszek, M. J. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8, 241-254 (2005).
  7. Levental, K. R. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139, 891-906 (2009).
  8. Butler, T. P., Grantham, F. H., Gullino, P. M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 35, 3084-3088 (1975).
  9. Dafni, H. Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res. 62, 6731-6739 (2002).
  10. Chary, S. R., Jain, R. K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. U.S.A. 86, 5385-5389 (1989).
  11. Heldin, C. H. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer. 4, 806-813 (2004).
  12. Fukumura, D. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation. 17, 206-225 (2010).
  13. Shields, J. D. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell. 11, 526-538 (2007).
  14. Shieh, A. C. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71, 790-800 (2011).
  15. Shi, Z. D., Wang, H., Tarbell, J. M. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLoS One. 6, e15956 (2011).
  16. Fleury, M. E., Boardman, K. C., Swartz, M. A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J. 91, 113-121 (2006).
  17. Miteva, D. O. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106, 920-931 (2010).
  18. Ng, C. P., Hinz, B., Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell. Sci. 118, 4731-4739 (2005).
  19. Kunder, C. A. Mast cell-derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455-2467 (2009).
  20. Helm, C. L. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. U.S.A. 102, 15779-15784 (2005).
  21. McGuire, P. G., Seeds, N. W. The interaction of plasminogen activator with a reconstituted basement membrane matrix and extracellular macromolecules produced by cultured epithelial cells. J Cell Biochem. 40, 215-227 (1989).
  22. Kleinman, H. K. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 21, 6188-6193 (1982).
  23. Haessler, U. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr. Biol. (Camb). , (2011).
  24. Polacheck, W. J., Charest, J. L., Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 108, 11115-11120 (2011).
check_url/4159?article_type=t

Play Video

Cite This Article
Tchafa, A. M., Shah, A. D., Wang, S., Duong, M. T., Shieh, A. C. Three-dimensional Cell Culture Model for Measuring the Effects of Interstitial Fluid Flow on Tumor Cell Invasion. J. Vis. Exp. (65), e4159, doi:10.3791/4159 (2012).

View Video