Summary

Parkinson Hastalığında Maskeyi Düşürme Duyarlılık Mekanizmalarına Gen-Çevre Etkileşim Modelleri

Published: January 07, 2014
doi:

Summary

Lipoksijenaz (LOX) izozimler nöroinflamatuarasyonu ve nörodejenerasyonu artırabilecek veya azaltabilecek ürünler üretebilir. Gen-çevre etkileşimi çalışması LOX izozime özgü etkileri tanımlayabilir. İki LOX izozim eksikliği olan transgenik çizgilerde nigrostriatal hasarın 1-metil-4-fenil-1,2,3,6-tetrahidromiridin (MPTP) modelinin kullanılması, LOX izozimlerinin dopaminerjik bütünlük ve inflamasyona katkısının karşılaştırılmasını sağlar.

Abstract

Lipoksijenaz (LOX) aktivitesi Alzheimer hastalığı gibi nörodejeneratif bozukluklara karışmıştır, ancak Parkinson hastalığı (PD) patogenezinde etkileri daha az anlaşılmaktadır. Gen-çevre etkileşim modelleri, sadece genetik veya toksik bir hastalık modeli kullanılarak gözlemlenemeyen toksisitedeki belirli hücresel yolların etkisinin maskesini düşürmede yardımcı olur. Farklı LOX izozimlerinin PD ile ilgili nörodejenerasyona seçici olarak katkıda bulunup bulunmadığını değerlendirmek için, transgenik(yani 5-LOX ve 12/15-LOX eksikliği) farelere hücre yaralanmasını ve bozukluktaki ölümü taklit eden bir toksinle meydan okunabilir. Burada, LOX izozimlerinin PD ile ilgili nörodejenerasyona belirgin katkılarını ortaya çıkarmak için nigrostriatal bir lezyon üreten nörotoksin, 1-metil-4-fenil-1,2,3,6-tetrahidromiridin (MPTP) kullanımını açıklıyoruz. Farede MPTP kullanımı ve insan dışı primat, PD’deki nigrostriatal hasarı yeniden oluşturmak için iyi kurulmuştur. MPTP kaynaklı lezyonun kapsamı, dopamin ve metabolitlerinin HPLC analizi ve dopamin sentezi için hız sınırlayıcı enzim olan tirozin hidroksilaz (TH) için striatumun yarı nicel Batı blot analizi ile ölçülür. LOX iozim seçici duyarlılığı gösterebilen inflamatuar belirteçleri değerlendirmek için substantia nigra içeren beyin bölümlerinde glial fibril asidik protein (GFAP) ve Iba-1 immünofizokimyası, striatal homojenatlar üzerinde ise GFAP Batı blot analizi yapılır. Bu deneysel yaklaşım, nigrostriatal dejenerasyon ve PD’nin altında kalan gen-çevre etkileşimleri hakkında yeni içgörüler sağlayabilir.

Introduction

Gen-çevre etkileşim modellerinin kullanımı, idiyopatik Parkinson hastalığını (PD) etkilemesi muhtemel risk faktörlerini taklit etmek için bir yaklaşım sağlar ve sadece genetik veya toksik bir sistemin kullanılmasıyla aydınlatılması muhtemel olmayan mekanistik içgörüleri ayırt etme fırsatı sunar1,2. Burada bu noktayı göstermektedir ve lipoksijenaz (LOX) izozim aktivitesinin nöroinflamasyon ve toksisite üzerindeki seçiciliğini daha iyi anlamak için nigrostriatal dejenerasyon3’ün 1-metil-4-fenil-1,2,3,6-tetrahidromiridin (MPTP) fare modelinin uygulanmasını açıklıyoruz4. LOX izozimler için bir rol periferik bozukluklarda5,6 ve inme 7 ve Alzheimer hastalığı8,9 dahil olmak üzere CNS hastalığında yaygın olarak değerlendirilmiş olsa da, izozim ailesinin PD ile ilgili nigrostriatal fonksiyon ve dejenerasyondaki rolü iyi anlaşılmamıştır ve çalışmayı garanti eder. MPTP nörotoksin, nigrostriatal yolun tercihli dejenerasyonunu gösterir ve PD hastalarında motorik bozuklukların altında yatan striatal dopamin tükenmesi ve nigral dopaminerjik hücre kaybını rekapitulate eder10. Bu model, nonmotor ve motor PD davranışlarının tam kadrosunu ve frank α-sinüklein pozitif Lewy vücut patolojisini yeniden üretmese de, nigrostriatal hasara katkıda bulunan yeni mekanistik hedeflerin aydınlatılmış olması ve erken aşama çevirisel testler için yararlı olmuştur, çünkü striatal dopamin kaybı11-15eşliğinde nigral hücre ölümünü güvenilir bir şekilde üretmek için mevcut en iyi karakterize noninvaziv modeldir. MPTP farenin geniş kullanımı, akut, subakuttan kronik16-18’ekadar değişen paradigmalarla, tedavi rejimine bağlı olarak farklı toksisite mekanizmalarının aktivasyonu ilehafif ila şiddetli nigrostriatal hasara neden olacak şekilde standartlaştırmaya izin verdi18,21,22. Sonuç olarak, bu,23-25kullanılan terapötik ajana veya transgenik modele bağlı olarak gelişmiş veya azaltılmış nigrostriatal yaralanmaya neden olabilecek bir ‘lezyon penceresinin’ hedef alınmasına izin veriyor.

Çeviri ve keşif biyolojisi çalışmaları için de gerekli olan, hasarı değerlendirmek için kullanılan teknikler ve bu tür yöntemlerin sağladığı kanıtlardır. MPTP fare modeli için, Lezyonu değerlendirmek için belirlenen metrikler, HPLC tarafından dopamin ve metabolitleri de dahil olmak üzere striatal dopaminerjik ton belirteçlerinin ölçümü ve tirozin hidroksilazının (TH) Batı blot analizi, dopamin sentezinde hız sınırlayıcı enzim ve Batı blot analizi ve immünostokimya kullanılarak glial aktivasyon gibi dejeneratif olaylarıngöstergeleridir 4. Bunlar klasik nörokimyasal, biyokimyasal ve histolojik prosedürler olmasına rağmen, teknikler nigrostriatal dopaminerjik yol içindeki hasarın boyutu hakkında kritik ve tekrarlanabilir okumalar sağlar, toksisite mekanizmalarını gösterir ve PD’deki dejeneratif olayları anlamada değerli araçlar olduğu kanıtlanmıştır.

Protocol

Not: Tüm hayvan prosedürleri ve hayvan bakım yöntemleri kurumun Kurumsal Hayvan Bakım ve Kullanım Komitesi (IACUC) tarafından onaylanmalıdır. Burada açıklanan çalışma, SRI International’ın IACUC tarafından belirlenen yönergelere uygun olarak gerçek gerçekleştirildi. 1. LOX eksikliği olan farelerin edinimi ve bakımı 7-8 haftalıkken 5-LOX eksikliği veya 12/15-LOX eksikliği olan fareler ve ilgili suş ve c…

Representative Results

Bu toksin maruziyet paradigması, MPTP ve salin enjekte edilen hayvanlarda önemli ve tespit edilebilir% 20 striatal dopamin tükenmesi üretebilir. Farklı mptp çok az veya çok lezyon verebilir dikkat önemlidir; bu nedenle, daha iyi hassasiyet için, yeni bir nörotoksin çok fazla alındığında transgeniklerde kullanılmadan önce wildtype farelerde bir ön deney önerilir. Hafif-orta dereceli lezyon kullanımı transjenin etkisinin gözlenmesini sağlar; şiddetli bir lezyon, zayıflamak için çok sağlam veya …

Discussion

Bu gen-çevre etkileşimi çalışmasının tasarımı, nigrostriatal yoldaki 5-LOX izoziminin çift doğası hakkında yeni bilgiler edinmemizi sağladı. 5-LOX izozim ve wildtype çöp arkadaşlarından yoksun transgeniklerde salin veya MPTP tedavisinden sonra striatal monoaminleri ölçmek için HPLC yaparak, eksikliğinin toksik koşullar altında koruyucu göründüğünü not edebildik (Şekil 1), ancak normal koşullarda enzim eksikliği striatal dopamin seviyelerini azaltır ve zararlı olabilir…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Bu çalışma Ulusal Sağlık Enstitüleri NIGMS 056062 tarafından finanse edildi.

Materials

1-Methyl-4-phenyl-1,2,3,6-tetra-hydropyridine hydrochloride (MPTP-HCL) Sigma-Aldrich M0896 for PD modeling
4% Formaldehyde (paraformaldehyde) solution, phosphate-buffered (PFA) American MasterTech Scientific BUP0157 for immersion fixation
Perchloric acid ACS reagent, 70% (PCA) Sigma-Aldrich 244252 for HPLC acid extraction
Tris Base Sigma-Aldrich T1503 for tissue homogenization
Ethylenediaminotetraacetic acid disodium salt dihydrate (EDTA) Sigma-Aldrich E1644 for tissue homogenization
Protease inhibitor cocktail Sigma-Aldrich P8340 for tissue homogenization
Phosphatase inhibitor cocktail Sigma-Aldrich P5726 for tissue homogenization
Sodium Hydroxide (NaOH) Sigma-Aldrich S5881 for Lowry protein assay
Sucrose, molecular biology, ≥99.5% (GC)  Sigma-Aldrich S0389 for cryoprotection
Phosphate buffered saline, powder, pH 7.4 (for 0.01 M PBS) Sigma-Aldrich P3813 for IHC
BCA Protein Assay Kit Pierce/Thermo 23225 for protein determination
Novex 12% Tris-Glycine Mini Gels 1.0 mm, 12-well Invitrogen/Life Technologies EC60052BOX for SDS-PAGE
NuPAGE LDS Sample Buffer (4x) Invitrogen/Life Technologies NP0007 for SDS-PAGE
Novex Sharp Prestained Protein Standard  Invitrogen/Life Technologies LC5800 protein ladder
Glycine Sigma-Aldrich G7126 for SDS-PAGE
Sodium dodecyl sulfate, electrophoresis, 98.5% (SDS) Sigma-Aldrich L3771 for SDS-PAGE
Methyl Alcohol, Anhydrous, Reagent  American MasterTech Scientific SPM1057C methanol for transfer
Sodium chloride (NaCl), ACS reagent Sigma-Aldrich S9888 saline and buffers
Nonfat dry milk powder Carnation n/a for immunoblotting
Ponceau S solution in 5% acetic acid  Sigma-Aldrich P7170 for immunoblotting
Anti-Tyrosine Hydroxylase (TH), sheep polyclonal Chemicon/Millipore AB1542 for immunofluorescence 
Anti-Tyrosine Hydroxylase (TH), rabbit polyclonal Pel-Freez Biologicals P40101-0 for immunoblotting
Anti-β Actin, rabbit Sigma-Aldrich A2066 for immunoblotting
Anti-Glial Fibrillary Acidic Protein (GFAP), rabbit polyclonal Chemicon/Millipore AB5804 for immunofluorescence
Anti-Glial Fibrillary Acidic Protein (GFAP), mouse monoclonal Covance Inc. SMI-22R for immunoblotting
Tween-20 Sigma-Aldrich P1379 for immunoblotting
Goat Anti-Rabbit IgG (H+L), Peroxidase Conjugated  Fisher Scientific 31462 for immunofluorescence
goat anti-sheep, peroxidase conjugated Pierce/Thermo 31480 for immunofluorescence
goat anti-mouse, peroxidase conjugated Pierce/Thermo 31430 for immunofluorescence
SuperSignal West Pico Chemiluminescent Substrate Pierce/Thermo 34078 for immunoblotting
CL-XPosure Film 7 in x 9.5 in  Pierce/Thermo 34089 for immunoblotting
Restore Western Blot Stripping Buffer  Pierce/Thermo 21059 for immunoblotting
Citric acid monohydrate, ACS reagent, ≥99.0%  Sigma-Aldrich C1909 for IHC
Normal Donkey Serum Millipore S30-100ML for IHC
Polyvinylpyrrolidone (PVP) Sigma-Aldrich P5288 for IHC
Bovine Serum Albumin (BSA), lyophilized Sigma-Aldrich A3294 for IHC
Triton X-100 Fisher Scientific BP151-01 for IHC
Donkey anti-Rabbit IgG, Alexa Fluor 568-labeled  Invitrogen/Life Technologies A10042 for IHC
Donkey Anti-Sheep IgG (H+L), FITC  Jackson ImmunoResearch 713-095-147 for IHC
VECTASHIELD Hard-Set Mounting Medium with DAPI Vector Laboratories H-1500 for IHC
Normal Goat Serum Millipore S26-100ML for IHC
VECTASTAIN ABC Kit (Rabbit IgG )  Vector Laboratories PK-4001 for IHC; 10 µl each of solutions A and B per 1 ml PBS (per instructions )
DAB Peroxidase Substrate Kit, 3,3’-diaminobenzidine Vector Laboratories SK-4100 for IHC; per 5 ml cold ddH2O, add 2 drops buffer stock solution, 2 drops DAB, and 1 drop H2O2 (H2O2 is added immediately before use)
Hydrogen peroxide, 30% Sigma-Aldrich 216763 for quench step in IHC
Rabbit anti-Iba1 Biocare Medicals CP290A for IHC
Cresyl Violet Solution, Regular Strength  FD Neurotechnologies PS102-01  counterstain for Iba1 IHC
95% Ethanol, reagent alcohol Sigma-Aldrich R8382 dehydration for IHC
100% Absolute ethanol Mallinckrodt  7019-10 dehydration for IHC
Acetic acid Sigma-Aldrich A6283 destaining for IHC
Xylene Sigma-Aldrich 534056 clearing agent for IHC
DPX Mountant Sigma-Aldrich 06522 mounting medium for DAB IHC
O.C.T. Compound – Frozen Section Embedding Medium  American MasterTech Scientific EMOCTCS embeddium medium for cryostat cutting
Potassium permanganate Sigma-Aldrich 223468 to decontaminate DAB solution
Dopamine hydrochloride Sigma-Aldrich H8502 for HPLC
3,4-Dihydroxyphenylacetic acid (DOPAC) Sigma-Aldrich 850217 for HPLC
Homovanillic acid (HVA) Sigma-Aldrich H1252 for HPLC
Perchloric acid (PCA) – 70% Sigma-Aldrich 244252 for HPLC
Sodium dihydrogen phosphate monohydrate Sigma-Aldrich 71504 for HPLC
Citric acid monohydrate Sigma-Aldrich C1909 for HPLC
1-Octanesulfonic acid sodium salt (OSA) Sigma-Aldrich O8380 for HPLC
EDTA Sigma-Aldrich E1644 for HPLC
Acetonitrile EMD AX0145-1 for HPLC
HPLC-grade distilled deionized water (ddH2O) Millipore for HPLC
0.22 µm GSTF membrane Millipore for filtration
Corning Netwells Sigma-Aldrich CLS3477 polystyrene insert with polyester mesh bottom, for IHC
[header]
Ultrasonic cell disrupter (Soniprep 150) MSE MSE.41371.274
Microcentrifuge Eppendorf 5414R
ESA MD-150 reverse-phase column  ESA
HPLC Pump (Ultimate 3000) Dionex ISO-3100BM
HPLC Autosampler (Ultimate 3000) Dionex WPS-3000TSL
Electrochemical detector ESA Coulochem III
Guard Cell ESA 5020
Analytical Cell ESA 5011A
Chromeleon software Dionex
Eclipse E400 Nikon E400 light/fluorescent microscope
Disposable mouse cage Ancare N10HT
Microfilter top Ancare N10MBT
[header]
5-LOX- deficient mice The Jackson Laboratory 004155
12/15-LOX-deficient mice The Jackson Laboratory 002778

References

  1. Manning-Bog, A. B., Langston, J. W. Model fusion, the next phase in developing animal models for Parkinson's disease. Neurotox. Res. 11, 219-240 (2007).
  2. Vance, J. M., Ali, S., Bradley, W. G., Singer, C., Di Monte, D. A. Gene-environment interactions in Parkinson's disease and other forms of parkinsonism. Neurotoxicology. 31, 598-602 (2010).
  3. Heikkila, R. E., Hess, A., Duvoisin, R. C. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science. 224, 1451-1453 (1984).
  4. Chou, V. P., Holman, T. R., Manning-Bog, A. B. Differential contribution of lipoxygenase isozymes to nigrostriatal vulnerability. Neuroscience. 228, 73-82 (2013).
  5. Deschamps, J. D., Kenyon, V. A., Holman, T. R. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg. Med.Chem. 14, 4295-4301 (2006).
  6. Weaver, J. R., et al. Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol. Cell Endocrinol. 358, 88-95 (2012).
  7. Yigitkanli, K., et al. Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke. Ann. Neurol. 73, 129-135 (2013).
  8. van Leyen, K., et al. Novel lipoxygenase inhibitors as neuroprotective reagents. J Neurosci. Res. 86, 904-909 (2008).
  9. Chu, J., Pratico, D. 5-lipoxygenase as an endogenous modulator of amyloid beta formation in vivo. Ann. Neurol. 69, 34-46 (2011).
  10. Langston, J. W., Ballard, P., Tetrud, J. W., Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 219, 979-980 (1983).
  11. Bove, J., Perier, C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 211, 51-76 (2012).
  12. Beal, M. F. Neuroprotective effects of creatine. Amino Acids. 40, 1305-1313 (2011).
  13. Jackson-Lewis, V., Blesa, J., Przedborski, S. Animal models of Parkinson's disease. Parkinsonism Relat. Disord. 18, 183-185 (2012).
  14. Dauer, W., Przedborski, S. Parkinson's disease: mechanisms and models. Neuron. 39, 889-909 (2003).
  15. Wang, H., Shimoji, M., Yu, S. W., Dawson, T. M., Dawson, V. L. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann. N.Y. Acad. Sci. 991, 132-139 (2003).
  16. Petroske, E., Meredith, G. E., Callen, S., Totterdell, S., Lau, Y. S. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience. 106, 589-601 (2001).
  17. Przedborski, S., et al. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J. Neurochem. 76, 1265-1274 (2001).
  18. Thomas, B., et al. Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease. Antioxid. Redox. Signal. 16, 855-868 (2012).
  19. Sonsalla, P. K., Heikkila, R. E. The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur. J. Pharmacol. 129, 339-345 (1986).
  20. Di Monte, D. A., et al. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov. Disord. 15, 459-466 (2000).
  21. Lee, K. W., et al. Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS One. 7, (2012).
  22. Jackson-Lewis, V., Przedborski, S. Protocol for the MPTP mouse model of Parkinson's disease. Nat. Protoc. 2, 141-151 (2007).
  23. Bolin, L. M., Strycharska-Orczyk, I., Murray, R., Langston, J. W., Di Monte, D. Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. J. Neurochem. 83, 167-175 (2002).
  24. Manning-Bog, A. B., et al. Increased vulnerability of nigrostriatal terminals in DJ-1-deficient mice is mediated by the dopamine transporter. Neurobiol. Dis. 27, 141-150 (2007).
  25. Quik, M., Di Monte, D. A. Nicotine administration reduces striatal MPP+ levels in mice. Brain Res. 917, 219-224 (2001).
  26. Markey, S. P., Johannessen, J. N., Chiueh, C. C., Burns, R. S., Herkenham, M. A. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature. 311, 464-467 (1984).
  27. Heikkila, R. E., Manzino, L., Cabbat, F. S., Duvoisin, R. C. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature. 311, 467-469 (1984).
  28. Crampton, J. M., Runice, C. E., Doyle, T. J., Lau, Y. S., Wilson, J. A. MPTP in mice: treatment, distribution and possible source of contamination. Life Sci. 42, 73-78 (1988).
  29. Yang, S. C., Markey, S. P., Bankiewicz, K. S., London, W. T., Lunn, G. Recommended safe practices for using the neurotoxin MPTP in animal experiments. Lab. Anim. Sci. 38, 563-567 (1988).
  30. Lau, Y. S., Novikova, L., Roels, C. MPTP treatment in mice does not transmit and cause Parkinsonian neurotoxicity in non-treated cagemates through close contact. Neuroscience research. 52, 371-378 (2005).
  31. Satoh, N., et al. Central hypothermic effects of some analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP). Neurosci. Lett. 80, 100-105 (1987).
  32. Fernagut, P. O., et al. Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse. 61, 991-1001 (2007).
  33. Manning-Bog, A. B., McCormack, A. L., Purisai, M. G., Bolin, L. M., Di Monte, D. A. Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci. 23, 3095-3099 (2003).
  34. Richfield, E. K., et al. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp. Neurol. 175, 35-48 (2002).
  35. Thomas, B., et al. Resistance to MPTP-neurotoxicity in alpha-synuclein knockout mice is complemented by human alpha-synuclein and associated with increased beta-synuclein and Akt activation. PloS one. 6, (2011).
  36. Smeyne, M., Goloubeva, O., Smeyne, R. J. Strain-dependent susceptibility to MPTP and MPP(+)-induced parkinsonism is determined by glia. Glia. 34, 73-80 (2001).
  37. Hamre, K., Tharp, R., Poon, K., Xiong, X., Smeyne, R. J. Differential strain susceptibility following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus. Brain Res. 828, 91-103 (1999).
  38. Sedelis, M., et al. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav. Genet. 30, 171-182 (2000).
  39. Boyd, J. D., et al. Response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) differs in mouse strains and reveals a divergence in JNK signaling and COX-2 induction prior to loss of neurons in the substantia nigra pars compacta. Brain Res. 1175, 107-116 (2007).
  40. Ookubo, M., Yokoyama, H., Kato, H., Araki, T. Gender differences on MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in C57BL/6 mice. Molecular and cellular endocrinology. 311, 62-68 (2009).
  41. Kenchappa, R. S., Diwakar, L., Annepu, J., Ravindranath, V. Estrogen and neuroprotection: higher constitutive expression of glutaredoxin in female mice offers protection against MPTP-mediated neurodegeneration. FASEB J. 18, 1102-1104 (2004).
  42. Jackson-Lewis, V., Jakowec, M., Burke, R. E., Przedborski, S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration. 4, 257-269 (1995).
  43. Mizuno, Y., Sone, N., Saitoh, T. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem. 48, 1787-1793 (1987).
  44. Nicklas, W. J., Youngster, S. K., Kindt, M. V., Heikkila, R. E. M. P. T. P. MPP+ and mitochondrial function. Life Sci. 40, 721-729 (1987).
  45. Nicklas, W. J., Vyas, I., Heikkila, R. E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36, 2503-2508 (1985).
  46. Wu, D. C., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763-1771 (2002).
  47. Kurkowska-Jastrzebska, I., Wronska, A., Kohutnicka, M., Czlonkowski, A., Czlonkowska, A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50-61 (1999).
  48. Tatton, N. A., Kish, S. J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience. 77, 1037-1048 (1997).
  49. Furuya, T., et al. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. J Neurosci. 24, 1865-1872 (2004).
  50. Anderson, D. W., Bradbury, K. A., Schneider, J. S. Neuroprotection in Parkinson models varies with toxin administration protocol. Eur. J. Neurosci. 24, 3174-3182 (2006).
check_url/50960?article_type=t

Play Video

Cite This Article
Chou, V. P., Ko, N., Holman, T. R., Manning-Boğ, A. B. Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson’s Disease. J. Vis. Exp. (83), e50960, doi:10.3791/50960 (2014).

View Video