Summary

策略跟踪Anastasis,A细胞存活的现象,细胞凋亡反转

Published: February 16, 2015
doi:

Summary

The term anastasis refers to the phenomenon in which dying cells reverse a cell suicide process at a late stage, repair themselves, and ultimately survive. Here we demonstrate protocols for detecting and tracking cells that undergo anastasis.

Abstract

Anastasis(希腊的“上升到生命”)是指垂死细胞的恢复。之前,这些细胞恢复,它们通过细胞凋亡的重要的检查站,包括线粒体碎裂,释放线粒体细胞色素C进入细胞质,活化胱天蛋白酶的,染色质凝集,DNA损伤,核碎裂,细胞膜起泡,细胞收缩,细胞表面暴露已经过去了磷脂酰丝氨酸的,和凋亡小体形成。当凋亡刺激被死前删除,从而使死亡的细胞逆转细胞凋亡和潜在的其他死亡机制Anastasis可能发生。因此,anastasis似乎涉及生理愈合过程也可以维持受损细胞不适当。的功能和anastasis的机制仍不清楚,阻碍在部分由有限的工具为明显健康细胞的恢复之后检测过去的事件。策略来检测anasta矽统将使生理机制的研究,不死细胞疾病的病理的危害和潜在的治疗方法来调节anastasis。在这里,我们将介绍使用活细胞显微镜和哺乳动物蛋白酶生物传感器的识别和跟踪anastasis在哺乳动物细胞中有效的策略。

Introduction

细胞凋亡(希腊的“坠落死亡”)被普遍认为是一个单向的过程,细胞自杀1-7结束。亲死亡的基因产生额外的电池,否则死在整体动物,包括细胞已经开始凋亡通路8,9的生存基因的破坏。同样,基因操作使健康的哺乳动物细胞人为显示“吃我”的信号,或者说失去粘附性的细胞外基质难逃一死的全细胞吞噬或entosis期间,分别为10,11。然而,我们和其他人已经表明,如果没有遗传操作正常健康的哺乳动物细胞和细胞系还可以从细胞凋亡12-15的早期阶段中恢复。使用工具来追踪单个细胞,我们进一步证明凋亡12,13的后期恢复,细胞已通过检查站的重要典型的后LY标记“不归路”2-6。晚期凋亡的这些检查点包括线粒体释放细胞色素c,活化胱天蛋白酶的,核碎裂和凋亡小体形成。我们通过一个希腊复合词“anastasis”,意思是“上升 ​​到生活”,来形容这种逆转细胞凋亡的细胞死亡2-6的边缘。

除非整个垂死恢复过程是由活细胞成像观测,它是具有挑战性的区分也从没有经历过的事件凋亡细胞发生anastasis细胞。几十年来的工作人士透露,细胞自杀凋亡的形态特征是由进化上保守的生化和分子事件16-19驱动。这些事件促使自我毁灭的细胞通过消除受损或D,有利于在单细胞和多细胞生物的发育和homoeostatic流程angerous细胞16-19。而凋亡细胞可以通过细胞凋亡1,5,6,16,20标准化形态学,生物化学和分子表现容易地区别,目前有特定于anastasis 12,13没有已知的标记物。重要的是,经历了anastasis细胞似乎是正常的健康细胞,而细胞刚刚开始扭转凋亡出现凋亡死亡的细胞12,13。因此,新的工具来完成与给定的细胞存活此前曾经历了积极的凋亡过程肯定需要的。

凋亡通常假设为一个不可逆的级联,因为它是一种快速,大规模破坏的过程。而它可能需要几分钟到几天对某些细胞以引发细胞凋亡,一旦线粒体已经发布凋亡因子如细胞色素C进入细胞质21,22,胱天蛋白酶可以在5分钟23,24内被激活,接着细胞质和在10分钟内25-27核缩合,细胞死亡,此后不久25-27。激活胱天蛋白酶裂解和失活对蜂窝拆卸2,28,目的关键的结构和功能部件,如内切酶抑制剂DFF45 / ICAD 29,30编排凋亡。半胱氨酸蛋白酶还能激活促凋亡因子,如BCL-2家族成员BID,其中转运至线粒体,促进细胞色素线粒体释放C. 31,32。蛋白酶活性也导致磷脂酰丝氨酸的细胞表面暴露作为一个“吃我”的信号,促进通过吞噬垂死33细胞巨噬细胞或相邻细胞吞噬。此外,细胞凋亡事件使线粒体功能失调,破坏细胞的生物能学和新陈代谢34,35,36。因此,从这种破坏复苏看起来可能性不大直观。

相反,原来的期望ations,细胞甚至可以在后期阶段扭转凋亡细胞死亡的过程。通过连续地监测在培养濒死细胞的命运,我们观察到晚期凋亡的可逆性的范围内的初级细胞和细胞系12,13。除去死亡的刺激的允许回收从细胞凋亡的显性功能,如线粒体碎裂,染色质凝聚,DNA损伤,质膜起泡,磷脂酰丝氨酸的细胞表面暴露,线粒体细胞色素c释放,caspase激活,核碎裂,细胞皱缩,和凋亡小体形成。这些观察结果提出有关的功能,后果和anastasis机制悬而未决的问题。为了解决这些问题,一个先决条件是要可靠地识别已发生anastasis细胞。在这里,我们描述了活显微镜的方法和胱天蛋白酶的生物传感器,用于检测细胞先前已逆转晚期凋亡和第恩幸存。

Protocol

1.准备细胞活细胞成像的为了方便的形态变化的检测,选择贴壁细胞例如HeLa(人宫颈​​癌)细胞是平坦的基板上,以更好地可视化改变质膜和细胞器的。 注:细胞凋亡的逆转已在各种哺乳动物细胞中12,13,包括原代小鼠肝细胞,原代巨噬细胞,原代大鼠心肌细胞中观察到,并且还细胞系,例如人胚胎肾HEK-293T细胞,非洲绿猴肾上皮的COS -7细胞,小鼠心肌的HL-1细胞,小鼠NIH 3T…

Representative Results

研究细胞凋亡的逆转,组织培养细胞的第一次接触到死亡刺激触发细胞凋亡。当细胞凋亡显示的标志,新鲜的培养液中,然后应用到洗去刺激,然后孵化死亡的细胞,使恢复( 图1A)。这里,正在解决的关键问题是个人的濒死细胞培养多远,能对细胞凋亡的进展,仍然接受anastasis。这个问题可以明确回答连续监测的生物标记物来跟踪使用下面描述的方法的细胞命运。 <p class="jove_con…

Discussion

Anastasis指现象,已激活的细胞死亡途径细胞随后扭转死亡过程和生存。在这里,我们已经证明,活细胞成像,可用于确认同一个体细胞其实可以在后期阶段逆转细胞凋亡的过程,然后继续生存和繁殖。我们的协议描述了几种优化的小区类型特定的处理条件,以诱导细胞凋亡和使细胞的相当大的比例,以进行细胞凋亡的逆转与几个生物标记进行验证监控。关于技术问题,玻璃底培养皿使用,因为高…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢牧师博士拉尔夫Bohlmann和牧师詹姆斯Voelz博士提出了这个词“anastasis”来形容逆转细胞凋亡;道格拉斯·R·格林对HeLa细胞稳定表达细胞色素C-GFP;查尔斯·M.·鲁丁和Eric E.加德纳的H446细胞;希瑟羔羊,在视频卡通画援助;怡辉杨本手稿的价值的讨论。这项工作是由尤德爵士奖学金(HLT),博士沃尔特·司徒纪念奖学金(HLT),富布赖特资助007-2009(HLT),生命科学研究基金会的奖学金(HLT)的支持下,美国国立卫生研究院授予NS037402(JMH)和NS083373(江铃控股),以及香港大学教育资助委员会的AoE / B-07/99(MCF)。何林堂是生命科学研究基金会的Shurl和凯库尔奇基金会研究员。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
LSM780 confocal microscopy Carl Zeiss /
Glass bottom culture dish MatTek Corporation P35G-0-14-C
Transparent CultFoi Carl Zeiss 000000-1116-084
CO2 independent medium Life Technologies 18045-088
CellTracker Life Technologies C34552
Mitotracker Red CMXRos Life Technologies M-7512
Hoechst 33342 Life Technologies H1399
Fluorescently labeled annexin V Biovision K201

References

  1. Kerr, J. F., Wyllie, A. H., Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer. 26, 239-257 (1972).
  2. Riedl, S. J., Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews Molecular Cell Biology. 5, 897-907 (2004).
  3. Green, D. R., Kroemer, G. The pathophysiology of mitochondrial cell death. Science. 305, 626-629 (2004).
  4. Chipuk, J. E., Bouchier-Hayes, L., Green, D. R. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death and Differentiation. 13, 1396-1402 (2006).
  5. Kroemer, G., et al. Classification of cell death recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation. 16, 3-11 (2009).
  6. Galluzzi, L., et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation. 19, 107-120 (2012).
  7. Holland, A. J., Cleveland, D. W. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nature Medicine. 18, 1630-1638 (2012).
  8. Reddien, P. W., Cameron, S., Horvitz, H. R. Phagocytosis promotes programmed cell death in C. elegans. Nature. 412, (2001).
  9. Hoeppner, D. J., Hengartner, M. O., Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature. 412, 202-206 (2001).
  10. Segawa, K., et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science. 344, 1164-1168 (2014).
  11. Overholtzer, M., et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 131, 966-979 (2007).
  12. Tang, H. L., Yuen, K. L., Tang, H. M., Fung, M. C. Reversibility of apoptosis in cancer cells. British Journal of Cancer. 100, (2009).
  13. Tang, H. L., et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Molecular Biology of the Cell. 23, 2240-2252 (2012).
  14. Hammill, A. K., Uhr, J. W., Scheuermann, R. H. Annexin V staining due to loss of membrane asymmetry can be reversible and precede commitment to apoptotic death. Experimental Cell Research. 251, (1999).
  15. Geske, F. J., Lieberman, R., Strange, R., Gerschenson, L. E. Early stages of p53-induced apoptosis are reversible. Cell Death and Differentiation. 8, 182-191 (2001).
  16. Jacobson, M. D., Weil, M., Raff, M. C. Programmed cell death in animal development. Cell. 88, 347-354 (1997).
  17. Hardwick, J. M., Cheng, W. C. Mitochondrial programmed cell death pathways in yeast. Developmental Cell. 7, 630-632 (2004).
  18. Frohlich, K. U., Fussi, H., Ruckenstuhl, C. Yeast apoptosis-from genes to pathways. Seminars in Cancer Biology. 17, 112-121 (2007).
  19. Fuchs, Y., Steller, H. Programmed cell death in animal development and disease. Cell. 147, 742-758 (2011).
  20. Taylor, R. C., Cullen, S. P., Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology. 9, 231-241 (2008).
  21. Wang, X. The expanding role of mitochondria in apoptosis. Genes & Development. 15, 2922-2933 (2001).
  22. Galluzzi, L., Kepp, O., Kroemer, G. Mitochondria: master regulators of danger signalling. Nature Reviews Molecular Cell Biolog. 13, 780-788 (2012).
  23. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I., Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biology. 2, 156-162 (2000).
  24. Goldstein, J. C., et al. Cytochrome c is released in a single step during apoptosis. Cell Death and Differentiation. 12, 453-462 (2005).
  25. Tyas, L., Brophy, V. A., Pope, A., Rivett, A. J., Tavare, J. M. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Reports. 1, 266-270 (2000).
  26. Takemoto, K., Nagai, T., Miyawaki, A., Miura, M. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. The Journal of Cell Biology. 160, 235-243 (2003).
  27. Albeck, J. G., et al. Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Molecular Cell. 30, 11-25 (2008).
  28. Luthi, A. U., Martin, S. J. The CASBAH: a searchable database of caspase substrates. Cell Death and Differentiation. 14, 641-650 (2007).
  29. Liu, X., Zou, H., Slaughter, C., Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 89, 175-184 (1997).
  30. Enari, M., et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 391, 43-50 (1998).
  31. Li, H., Zhu, H., Xu, C. J., Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94, 491-501 (1998).
  32. Slee, E. A., Keogh, S. A., Martin, S. J. Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death and Differentiation. 7, 556-565 (2000).
  33. Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R., Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science. 341, 403-406 (2013).
  34. Kroemer, G., Martin, S. J. Caspase-independent cell death. Nature Medicine. 11, 725-730 (2005).
  35. Chipuk, J. E., Green, D. R. Do inducers of apoptosis trigger caspase-independent cell death. Nature Reviews Molecular Cell Biolog. 6, 268-275 (2005).
  36. Tait, S. W., Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology. 11, 621-632 (2010).
  37. Claycomb, W. C., et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences of the United States of America. 95, 2979-2984 (1998).
  38. Zhang, G., Gurtu, V., Kain, S. R., Yan, G. Early detection of apoptosis using a fluorescent conjugate of annexin V. BioTechniques. 23, 525-531 (1997).
  39. Fenech, M. Cytokinesis-block micronucleus cytome assay. Nature Protocols. 2, 1084-1104 (2007).
  40. Fenech, M., et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 26, 125-132 (2011).
  41. Gordon, D. J., Resio, B., Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics. 13, (2012).
  42. Poreba, M., Strozyk, A., Salvesen, G. S., Drag, M. Caspase substrates and inhibitors. Cold Spring Harbor Perspectives in Biology. 5, a008680 (2013).
  43. Talanian, R. V., et al. Substrate specificities of caspase family proteases. The Journal of Biological Chemistry. 272, 9677-9682 (1997).
  44. Logue, S. E., Elgendy, M., Martin, S. J. Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nature Protocols. 4, 1383-1395 (2009).
  45. Kenis, H., et al. Annexin A5 uptake in ischemic myocardium: demonstration of reversible phosphatidylserine externalization and feasibility of radionuclide imaging. Journal of Nuclear Medicine. 51, 259-267 (2010).
  46. Ruegg, U. T., Staurosporine Burgess, G. M. K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends in Pharmacological Sciences. 10, 218-220 (1989).
  47. Bertrand, R., Solary, E., O’Connor, P., Kohn, K. W., Pommier, Y. Induction of a common pathway of apoptosis by staurosporine. Experimental Cell Research. 211, 314-321 (1994).
  48. Chae, H. J., et al. Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacological Research. 42, 373-381 (2000).
  49. Takemoto, K., et al. Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo. Proceedings of the National Academy of Sciences of the United States of America. 104, 13367-13372 (2007).
  50. Bardet, P. L., et al. A fluorescent reporter of caspase activity for live imaging. Proceedings of the National Academy of Sciences of the United States of America. 105, 13901-13905 (2008).
  51. Florentin, A., Arama, E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. The Journal of Cell Biology. 196, 513-527 (2012).
  52. Chihara, T., et al. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila. PLoS Genetics. 10, e1004437 (2014).
check_url/51964?article_type=t

Play Video

Cite This Article
Tang, H. L., Tang, H. M., Hardwick, J. M., Fung, M. C. Strategies for Tracking Anastasis, A Cell Survival Phenomenon that Reverses Apoptosis. J. Vis. Exp. (96), e51964, doi:10.3791/51964 (2015).

View Video