Summary

核酸,蛋白质与甲基转移和辅酶类似物序列特异性标签

Published: November 22, 2014
doi:

Summary

DNA和蛋白质序列特异性标记的亲和力,或使用DNA或蛋白质的甲基和合成的辅助因子的类似物的荧光报告基团。取决于酶,氮丙啶或双活化的辅助因子类似物的辅因子特异性的用于一个或两个步骤的标签。

Abstract

S -Adenosyl -1-甲硫氨酸(的AdoMet或SAM)依赖性甲基转移(转移酶)催化激活甲基来自的AdoMet中的DNA,RNA,蛋白质和小生物分子转移到特定的位置。这种自然甲基化反应可扩展到各种各样的使用合成的辅助因子的类似物的烷基化反应。更换的AdoMet的反应性锍中心与氮丙啶环的导致辅因子可加上由各种DNA MTases的DNA。这些氮丙啶辅助因子可配记者团在腺嘌呤部分的不同位置,并用于ethyltransferase- EP3受体激动剂诱导DNA(笑DNA) L-阿贝尔ING S equence 专用的M。作为一个典型的例子,我们给出一个协议的pBR322的质粒DNA的生物素化在5'- ATCG T-3'序列与该DNA转移酶M.BseCI和氮丙啶辅因子6BAz在一个步骤。延长活化甲基与不饱和烷基结果另一类的AdoMet类似物的是用以 ethyltransferase定向T的一个ctivatedģroups(MTAG)转让(BOT)的。由于延长侧链由锍中心和不饱和键激活时,这些辅因子被称为双活化的AdoMet类似物。这些类似物不仅用作辅因子用于DNA MTases,如氮丙啶辅因子,而且还用于RNA,蛋白质和小分子MTases。它们通常用于转移酶底物与在第二化学步骤标记报告基团独特的官能团的酶促修饰。这被例示在一个协议组蛋白H3蛋白质的荧光标记。一个小炔基是从辅因子类似物SeAdoYn由组蛋白H3赖氨酸4(H3K4)转移酶SET7 / 9随后的单击标签转移到蛋白质炔基化组蛋白H3与TAMRA叠氮化物。与辅酶类似物转移酶介导的标签是一个有利的技术,许多令人兴奋的应用,包括识别和功能研究转移酶底物,以及DNA基因分型和甲基化检测。

Introduction

核酸1,2和蛋白质3,4特定的标签是功能性表征,医学诊断和(纳米)生物技术重大利益的。在这里,我们对这些生物聚合物是基于 S -adenosyl -1-甲硫氨酸(的AdoMet或SAM)依赖性甲基转移(MTases)提出了一种酶标记方法。这类酶(EC 2.1.1。)的目标的核酸和蛋白质的特定残基中的各个位置上的亲核(氮,氧,硫和碳原子)和自然传输的辅助因子的AdoMet( 1A)5的活化的甲基。此外,MTases可以利用合成的辅助因子的类似物与亲和标记,荧光团或其它标签( 1B)6特异性标记。已经开发了两个班的AdoMet类似物:氮丙啶辅助因子局长 equence 专用的M ethyltransferase- </strong> EP3受体激动剂诱导L阿贝尔荷兰国际集团 (笑)7和双启动的AdoMet类似物对M ethyltransferase定向T的一个 ctivated roups转让(BOT)(MTAG)8。

图1
图1:反应由甲基转移(MTases)从天然辅因子的AdoMet(SAM)的各种基材,包括DNA,RNA,蛋白质和小生物分子A.甲基转移的核酸和蛋白质B.标识/官能(NNNNN = 催化。碱基对的DNA,核苷酸的RNA和氨基酸的蛋白质; XXXXX =识别与绿色目标残渣),与​​合成辅酶类似物转移酶的序列。含记者组氮丙啶辅助因子(蓝色球)附着到腺嘌呤环是序列与靶残基(左)和双 – 活化的AdoMet类似物具体地说耦合导致传送携带化学记者Y(右),它可以通过在第二步骤中生物正交点击反应进行标记扩展烷基链。 请点击此处查看该图的放大版本。

氮丙啶辅助因子与DNA MTases效果最好。它们含有与氮原子9(N -mustard 10,11)代替锍中心作为反应性基团的3元环。该氮原子的质子化激活的氮丙啶环用于由靶核苷酸从而导致共价全辅因子与DNA的偶联亲核攻击。通过将报告基团到腺嘌呤环的氮丙啶的辅助因子,可以组合使用与DNA MTases以在一个步骤中标记的DNA( <stron克>图1B,左图)7,12。这表现了详细的DNA与6BAz 13的生物素– 15(氮丙啶辅助因子与生物素附着于腺嘌呤环的6位)和腺嘌呤特异性DNA转移酶来自嗜热脂肪芽孢杆菌 (M.BseCI)16( 图2,见协议第2节: 通过氮丙啶辅助因子DNA的一步标签)。除了​​M.BseCI(5'-ATCG T-3'识别序列)的DNA MTases从水生栖热菌 (M.TaqI,5'-TCG -3“),嗜血heamolyticus(M.HhaI,5 '-GÇGC-3')和从螺原体 (M.SssI,5'- C G-3')已被成功地用于生物素化的DNA与6BAz 17。此外,氮丙啶辅因子可用于一步法荧光DNA标记18,19。

ontent“FO:保持together.within页=”总是“> 图2
图2:DNA与M.BseCI和6BAz序列特异性一步法生物素化的DNA转移酶M.BseCI识别双链DNA序列5'-ATCG T-3'和自然甲基化的第二腺嘌呤的氨基残渣(绿色)使用的AdoMet。随着氮丙啶辅6BAz的反应过程被改变,M.BseCI导致通过耦合整个辅助因子包括生物素(蓝色)与目标腺嘌呤测序特异的DNA生物素化。 请点击此处查看该图的放大版本。

双活化的AdoMet类似物包含扩展的不饱和侧链而不是在锍中心甲基( 图1B </strong>的吧)20。不饱和双键或三键的β位置到锍中心电子补偿由共轭稳定化中的过渡状态不利位阻效应。因为两者的锍中心和不饱和键激活侧链酶促转移,这些辅因子被命名为双活化的AdoMet类似物。通常情况下,它们被用来在第二步骤8,21传送侧链具有独特的化学基团(化学记者),象氨基,炔和叠氮基团,化学-选择性标记。在一般情况下,双启动的AdoMet类似物不仅可以用作辅助因子DNA MTases 8,20,21也为RNA MTases 22,23和蛋白质MTases 24 – 28,允许RNA和蛋白质的额外的标签。然而,在扩展侧链立体比甲基更苛刻的和扩大的转移酶的活性位点由蛋白质工程是经常连接需要获得有效的传输速率。另一个解决这个问题的方法是使用一个的AdoMet类似物具有小炔基(3个碳原子),其中所述末端炔提供两个功能:酶促转移期间1.稳定过渡态和2反应手柄以下由铜化学修饰催化叠氮炔环加成(CuAAC)点击化学。原来,产生的丙炔的AdoMet模拟29只在有限的使用中性或弱碱性条件下,相当不稳定。这个缺点可以固定通过用硒代替硫原子。所得的辅助因子的5' – [(Se)的[(3 S)-3-氨基-3-羧基丙基〕丙-2- ynylselenonio〕-5'-脱氧腺苷(SeAdoYn, 图3)由野生型DNA的接受,核糖核酸和蛋白质MTases 30 – 32,其废除在许多情况下,需要进行蛋白质工程。这是通过荧光亲例举蛋白标记的组蛋白H3赖氨酸4(H3K4)转移酶SET7 / 9 33( 图3,看到协议部3: 通过双活化的辅助因子的两步蛋白标记)。

图3
图3:序列特异性的两步荧光组蛋白H3与SET7 / 9的标签,SeAdoYn和TAMRA叠氮化物的蛋白质转移酶SET7 / 9自然甲基化使用的AdoMet的氨基中的组蛋白H3的赖氨酸4的(H3K4,绿色)。与双活化的辅助因子SeAdoYn的转移酶转移一个小炔基(红色)与赖氨酸残基。所附终端三键,然后有选择地修改在生物正交点击反应(铜 – 催化的叠氮化物 – 炔环加成,CuAAC)与叠氮化物衍生化TAMRA(四甲基,蓝)的荧光团。加载/ 52014 / 52014fig3highres.jpg“目标=”_空白“>点击此处查看该图的放大版本。

Protocol

1.一般说明商店氮丙啶辅因子6BAz(在DMSO中)和蛋白质转移酶SET7 / 9在-80℃,所有其他试剂包括双活化的辅助因子SeAdoYn和DNA转移酶M.BseCI(在50%甘油)在-20℃下。 使用消光系数ε269nm(6BAz)=16000厘米-1 M -1和ε260nm处 (SeAdoYn)=15400厘米-1 M -1,在去离子水通过紫外/可见光谱确定6BAz和SeAdoYn的浓度。通过Bradford测定法在280nm确定MTases?…

Representative Results

DNA通过氮丙啶辅因子一步法标签 本实施例中进行反应用DNA转移酶M.BseCI,该修改的双链5'- ATCG T-3'序列中的第二个腺嘌呤残基和具有一个识别位点上的pBR322的质粒( 图4A)。为了测试质粒标签,pBR322中是用限制性内切酶(REase)R.TaqI(5'-TCGA-3')的挑战。 R.TaqI具有七个位点上的pBR322,其中之一包括在M.BseCI站点。如果出现标签,所述M.Bs…

Discussion

DNA与DNA MTases和氮丙啶辅助因子(笑DNA)中的一个步骤的标签是一个强大的方法,但计划实验时,有些方面应该考虑。

氮丙啶辅:用于DNA标记的6BAz浓度M.BseCI为60微米。当使用其它DNA MTases辅因子浓度应被优化, 例如 ,浓度低至20μM的已使用用该DNA转移酶M.TaqI 19。低6BAz浓度具有四倍过量的链霉(结合位点相对于生物素在测定的总量)的能够孵育REase后直接…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Kerstin Glensk for preparing the MTases M.BseCI and Set7/9 and gratefully acknowledge funding by the Excellence Initiative of the German Federal and State Governments and RWTH Aachen University. The authors are happy to provide 6BAz and SeAdoYn or other cofactor analogues for collaborative research.

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
6BAz Synthesized according to Weinhold et al., Patent number US 8,129,106, published March 6, 2012.
β-Mercaptoethanol Serva 28625
Acetic acid Fisher Scientific 10304980
Acrylamide/Bis Solution, 37.5:1 Serva 10688
UltraPure Agarose Invitrogen 16500100
Ammonium persulfate (APS) Serva 13375
Bis-Tris Gerbu 1304
Boric acid Gerbu 1115
Bromophenol blue Na salt Serva 15375
Copper(II) sulfate Aldrich C1297
Chloroform Fisher Scientific 10020090
Coomassie Brilliant Blue Serva 17525
EDTA disodium salt Gerbu 1034
Ethanol Merck 100983
GelRed (10000x in water) Biotium 41003
Glycerol (99.5%) Gerbu 2006
FastRuler Low Range DNA Ladder Thermo Scientific SM1103
Histone H3 Expressionplasmid obtained from Dr. Philipp Voigt and Prof. Danny Reinberg; expression and isolation according to T. J. Richmond et al., J. Mol. Biol. 1997, 272, 301-311.
M.BseCI Expressionplasmid obtained from Dr. Michael Kokkinidis; expression and isolation according to Kapetaniou et al., Acta Cryst. 2006, F63, 12-14.
Methanol Fisher Scientific 10675112
Magnesiumchloride  hexahydrate J.T. Baker 4003
MOPS Gerbu 1081
Sodium chloride Gerbu 1112
pH strip (Neutralit) Merck 1,095,330,001
pBR322 Thermo Scientific SD0041
R.TaqI (10u/µl) Thermo Scientific ER0671
SeAdoYn Synthesized according to Willnow et al., ChemBioChem 2012, 13, 1167-1173.
Set7/9 Expressionplasmid obtained from Prof. Danny Reinberg, expression and isolation according to D. Reinberg et al., Genes Dev.2002, 16, 479-489.
Streptavidin Gerbu 3058
(+)-Sodium L-ascorbate Sigma Life Science A7631
SDS Granular Gerbu 1833
di-Sodiumhydrogenphosphat Merck 106,586
TAMRA-azide
TaqI buffer (10x) Thermo Scientific B28
N,N,N',N'-Tetramethylethylenediamine (TEMED) Acros Organics 42058
Tris-HCl Gerbu 1028
Tris-X (TRIS-base) Gerbu 1018
Tris(3-hydroxypropyltriazolyl-methyl)amine (THPTA) Sigma-Aldrich 762342

References

  1. Gottfried, A., Weinhold, E. Sequence-specific covalent labelling of DNA. Biochem. Soc. Trans. 39, 623-628 (2011).
  2. Zohar, H., Muller, S. J. Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. Nanoscale. 3, 3027-3039 (2011).
  3. Hinner, M. J., Johnsson, K. How to obtain labeled proteins and what to do with them. Curr. Opin. Biotechnol. 21, 766-776 (2010).
  4. Wua, Y. -. W., Goody, R. S. Probing protein function by chemical modification. J. Pept. Sci. 16, 514-523 (2010).
  5. Struck, A. -. W., Thompson, M. L., Wong, L. S., Micklefield, J. S-Adenosyl-methionine-dependent methyltransferases: Highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem. 13, 2642-2655 (2012).
  6. Klimasauskas, S., Weinhold, E. A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol. 25, 99-104 (2007).
  7. Pljevaljcic, G., Schmidt, F., Weinhold, E. Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). ChemBioChem. 5, 265-269 (2004).
  8. Lukinavicius, G., Lapiene, V., Stasevskij, Z., Dalhoff, C., Weinhold, E., Klimasauskas, S. Targeted labeling of DNA by methyltransferase-directed Transfer of Activated Groups (mTAG). J. Am. Chem. Soc. 129, 2758-2759 (1021).
  9. Pignot, M., Siethoff, C., Linscheid, M., Weinhold, E. Coupling of a nucleoside with DNA by a methyltransferase. Angew. Chem. Int. Ed. 37, 2888-2891 (1998).
  10. Weller, R. L., Rajski, S. R. Design, synthesis, and preliminary biological evaluation of a DNA methyltransferase-directed alkylating agent. ChemBioChem. 7, 243-245 (2006).
  11. Du, Y., Hendrick, C. E., Frye, K. S., Comstock, L. R. Fluorescent DNA Labeling by N-Mustard Analogues of S-adenosyl-l-methionine. ChemBioChem. 13, 2225-2233 (2012).
  12. Pljevaljcic, G., Schmidt, F., Scheidig, A. J., Lurz, R., Weinhold, E. Quantitative labeling of long plasmid DNA with nanometer precision. ChemBioChem. 8, 1516-1519 (1002).
  13. Wilkinson, S., et al. Molecular scale architecture: engineered three- and four-way junctions. Bioconjugate Chem. 19, 470-475 (2008).
  14. Braun, G., et al. Enzyme-directed positioning of nanoparticles on large DNA templates. Bioconjugate Chem. 19, 476-479 (2008).
  15. Kim, S., et al. Enzymatically incorporated genomic tags for optical mapping of DNA binding proteins. Chem. Int. Ed. 51, 3578-3581 (2012).
  16. Rina, M., Bouriotis, V. Cloning purification and characterization of the BseCI DNA methyltransferase from Bacillus stearothermophilus. Gene. 133, 91-94 (1993).
  17. Weinhold, E., Meier, T., Düfel, H., Markert-Hahn, C., Schmuck, R. Sequence-specific detection of methylation in biomolecules. US Patent. , (2012).
  18. Pljevaljcic, G., Pignot, M., Weinhold, E. Design of a new fluorescent cofactor for DNA methyltransferases and sequence-specific labeling of DNA. J. Am. Chem. Soc. 125, 3492-3410 (2003).
  19. Schmidt, F. H. -. G., Hüben, M., Gider, B., Renault, F., Teulade-Fichou, M. -. P., Weinhold, E. Sequence-specific Methyltransferase-Induced Labelling (SMILing) of plasmid DNA for studying cell transfection. Bioorg. Med. Chem. 16, 40-48 (2008).
  20. Dalhoff, C., Lukinavicius, G., Klimasauskas, S., Weinhold, E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat. Chem. Biol. 2, 31-32 (2006).
  21. Lukinavicius, G., Tomkuviene, M., Masevicius, V., Klimasauskas, S. Enhanced chemical stability of AdoMet analogues for improved methyltransferase-directed labeling of DNA. ACS Chem. Biol. 8, 1134-1139 (2013).
  22. Motorin, Y., et al. Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Res. 39, 1943-1952 (1943).
  23. Schulz, D., Holstein, J. M., Rentmeister, A. A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew. Chem. Int. Ed. 52, 7874-7878 (2013).
  24. Peters, W., et al. Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew. Chem. Int. Ed. 49, 5170-5173 (2010).
  25. Islam, K., Zheng, W., Yu, H., Deng, H., Luo, M. Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling. ACS Chem. Biol. 6, 679-684 (2011).
  26. Wang, R., Zheng, W., Yu, H., Deng, H., Luo, M. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-l-methionine analogues. J. Am. Chem. Soc. 133, 7648-7651 (2011).
  27. Islam, K., et al. Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-l-methionine. J. Am. Chem. Soc. 134, 5909-5915 (2012).
  28. Islam, K., et al. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc. Natl. Acad. Sci. U.S.A. 110, 16778-16783 (2013).
  29. Binda, O., Boyce, M., Rush, J. S., Palaniappan, K. K., Bertozzi, C. R., Gozani, O. A chemical method for labeling lysine methyltransferase substrates. ChemBioChem. 12, 330-334 (2011).
  30. Willnow, S., Martin, M., Lüscher, B., Weinhold, E. A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. ChemBioChem. 13, 1167-1173 (2012).
  31. Bothwell, I. R., et al. Se-Adenosyl-l-selenomethionine cofactor analogue as a reporter of protein methylation. J. Am. Chem. Soc. 134, 14905-14912 (2012).
  32. Tomkuviene, M., Clouet-d’Orval, B., Cerniauskas, I., Weinhold, E., Klimasauskas, S. Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases. Nucleic Acids Res. 40, 6765-6773 (2012).
  33. Nishioka, K., et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479-489 (2002).
  34. Clark, P. M., et al. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc. 130, (2008).
  35. Lukinavicius, G., Lapinaite, A., Urbanaviciute, G., Gerasimaite, R., Klimasauskas, S. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA. Nucleic Acids Res. 40, 11594-11602 (2012).
  36. Neely, R. K., Dedecker, P., Hotta, J., Urbanaviciute, G., Klimasauskas, S., Hofkens, J. DNA fluorocode: A single molecule, optical map of DNA with nanometre resolution. Chem. Sci. 1, 453-460 (2010).
  37. Roberts, R. J., Vincze, T., Posfai, J., Macelis, D. REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 38, 234-236 (2010).
  38. Petrossian, T. C., Clarke, S. G. Uncovering the human methyltransferasome. Mol. Cell. Proteomics. 10, 1-12 (2011).
  39. Kriukiene, E., et al. DNA unmethylome profiling by covalent capture of CpG sites. Nat. Commun. 4, 2190 (2013).
  40. Wang, R., et al. Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells. J. Am. Chem. Soc. 135, 1048-1056 (2013).
  41. Zhang, C., Weller, R. L., Thorson, J. S., Rajski, S. R. Natural product diversification using a non-natural cofactor analogue of S-adenosyl-l-methionine. J. Am. Chem. Soc. 128, 2760-2761 (2006).
  42. Stecher, H., et al. Biocatalytic Fiedel-Crafts alkylation using non-natural cofactors. Angew. Chem. Int. Ed. 48, 9546-9548 (2009).
  43. Lee, B. W. K., Sun, H. G., Zang, T., Kim, B. J., Alfaro, J. F., Zhou, Z. S. Enzyme-catalyzed transfer of a ketone group from an S-adenosylmethionine analogue: A tool for the functional analysis of methyltransferases. J. Am. Chem. Soc. 132, 3642-3643 (2010).
  44. Winter, J. M., et al. Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org. Lett. 15, 3774-3777 (2013).
check_url/52014?article_type=t

Play Video

Cite This Article
Hanz, G. M., Jung, B., Giesbertz, A., Juhasz, M., Weinhold, E. Sequence-specific Labeling of Nucleic Acids and Proteins with Methyltransferases and Cofactor Analogues. J. Vis. Exp. (93), e52014, doi:10.3791/52014 (2014).

View Video