Summary

巨噬细胞通过二维电泳蛋白组学分析

Published: November 04, 2014
doi:

Summary

Macrophages are the key cells involved in host pathogenicity. Macrophages display phenotypic and functional diversity that can be analysed and detected by proteomic analysis. This article describes how to perform 2D electrophoresis of primary cultures of human macrophages differentiated into M1 or M2 phenotype.

Abstract

The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins.

Introduction

巨噬细胞是异质的,塑料的细胞,能够获得不同的功能表型。 在体内,这些细胞对大量的各种微环境signalssuch作为微生物产物,细胞因子, 等等 。1的响应。 在体外 ,所述促炎性表型(M1)的巨噬细胞可通过脂多糖(LPS)和抗炎表型(M2),通过某些细胞因子,如白介素-4(IL-4)诱导。此外,巨噬细胞可以从一个激活的M1至M2的表型转换,而相反地,在特定的信号2。

根据不同的表型,巨噬细胞将具有不同的功能。 M1巨噬细胞产生促炎细胞因子,如肿瘤坏死因子α(TNF-α),杀灭微生物或肿瘤细胞的3个细胞。与此相反,M2巨噬细胞阻止这些炎性应答状在伤口愈合和纤维化由产生抗inflammatorÝ因子如TGF-β3,4。

从健康供体的人外周血单核细胞通过Ficoll密度梯度离心法如使用适于从Boyum 6的技术先前描述5中分离得到。在培养的巨噬细胞后6天的原代培养7可以分化成M1或M2的表型。

蛋白质表达或根据各种受控刺激,如宿主的致病性或微生物毒素的巨噬细胞的两种亚型之间的蛋白质变化的分析,将是有益的破译亲和抗炎的巨噬细胞的功能。

蛋白质组学是用于直接监控的蛋白质,是具体地上调或下调的下各种刺激培养的人体巨噬细胞的独特工具。荧光染料已解决了某些二维凝胶电泳的局限性,如低灵敏度和图像分析8 < / SUP>。染料与半胱氨酸残基反应而增加的检测灵敏度相比,那些与赖氨酸残基9的反应。在先前的研究中,我们证明了DIGE饱和标记的有用稀少样品10的分析结果相比较,以经典的银染的二维电泳11。这种技术是在快速分析巨噬细胞的两种亚型之间或从同一亚型未处理和处理的巨噬细胞之间的蛋白质修饰很有帮助。

此蛋白质组技术的优点是具有由2D凝胶12分析获得的蛋白质的大小和翻译后修饰的信息。应当考虑到,这不是一个高通量技术,限制了可被分析的样品的数目。基于质谱的高通量测定法评论了发展最近13可以改善这一点。

_content“>这里,我们提出了如何通过电泳,等电聚焦的过程中执行从培养的巨噬细胞的蛋白提取2D DIGE分析和SDS-PAGE,以及对适当的2D软件的有用信息。

Protocol

该协议符合我们的机构人类研究伦理委员会的指导方针。从地区输血中心(里尔,法国)获得从健康人供体棕黄色大衣。从淡黄色大衣得到的样品被声明为一个INSERM集合(N°DC2010-1209)。 1.材料和文化传媒准备稀释10倍的磷酸盐缓冲盐水(PBS),在无菌蒸馏水中,得到的1×PBS。 作的RPMI 1640培养基补充有庆大霉素(40微克/毫升)和L-谷氨酰胺(2毫摩尔),有和没?…

Representative Results

执行适当的差动蛋白质组学分析,待分析样品的处理应加以核实。 在给出的例子中,需要的巨噬细胞的细胞培养物的质量为形态学和分子方面的先前公布的5。单核细胞分化成巨噬细胞和培养物的均一性,随后通过相显微镜。 图1显示的M1和M2巨噬细胞的原代培养物的一个例子。如图所示,我们证实M1( 图1A,B)和M 2( 图1C,D) ​​的</s…

Discussion

本文所描述的协议详细说明了分析巨噬细胞中,M1(促炎)和M2(抗炎)的两个亚型的各种刺激的影响的方法。的M1和M2巨噬细胞的原代培养物是从单核细胞分化得到的先前公布的7。

的2D DIGE凝胶电泳的方法需要特殊的材料和设备,如等电聚焦,以扫描在对Cy3和Cy5,一个扫描器,用于荧光激发/发射波长下的凝胶两次细胞对于等电聚焦,低荧光板用于SDS-PAGE上和2D软件。这…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by Inserm. Marion Bouvet is a fellow of the French Ministry for Research and Technology. Annie Turkieh is a fellow granted by European Union FP7 HOMAGE (305507).

Materials

Name Company Catalog number
RPMI 1640 Invitrogen 31870-074
PBX 10 X Invitrogen 14200-083
L-glutamine-200mM-100X Invitrogen 25030-024
gentamycin 10 mg/mL Invitrogen 15710-049
human serum Invitrogen 34005100
Ficoll d=1,077 ATGC L6115
Leucosep Dutscher 16760
 6-wells plate PRIMARIA  Becton Dickinson 353846
IL-4 Promocell B-61410
lipopolysaccharide Sigma-Aldrich L-2654
Giemsa Fluka 48900
EDTA MM372,2 Research Organics  3.00E+01
Filter 0,22µm Millipore SCGPTORE
100 mL cylinder Corning 430182
TCEP Interchim UP242214
Bradford reagent Bio-Rad 5000006
Cy3+Cy5-reactive dye GE Healthcare 25-8009-83
IPG strip 3-10 24cm GE Healthcare 17-6002-44
Protean IEF cell Bio-Rad 165-4000
Low-melting agarose Invitrogen 15517-014
Ettan-Daltsix system GE Healthcare 80-6485-08
Ettan DIGE Imager scanner GE Healthcare
Progenesis Samespot Non linear dynamics
50 ml tubes any supplier n/a
15 ml tubes any supplier n/a
CHAPS Sigma-Aldrich C5070
Urée Merk 108484-500
Thiourée Sigma-Aldrich T7875
DTT Bio-Rad 1610611
APS Sigma-Aldrich A3678
TEMED Sigma-Aldrich T9281
Tris Base Sigma-Aldrich T1503
Tris HCl Sigma-Aldrich T3253
Pharmalytes 3-10 GE Healthcare 17-0456-01
SDS Sigma-Aldrich L3773
Bromophenol blue Sigma-Aldrich 114391
Glycerol Sigma-Aldrich G6279
Acrylamide 40% Bio-Rad 161-0148
2D clean Up GE Healthcare 80-6454-51
Glycine Sigma-Aldrich G7126
Diméthylformamide Sigma-Aldrich 22705-6
electrode wicks Bio-Rad 165-4071

References

  1. van Ginderachter, J. A., et al. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology. 211, (2006).
  2. Porcheray, F., et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol. 142, 481-489 (2005).
  3. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23-35 (2003).
  4. Mantovani, A., Locati, M., Vecchi, A., Sozzani, S., Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22, 328-336 (2001).
  5. Pinet, F., et al. Morphology, homogeneity and functionality of human monocytes-derived macrophages. Cell. Mol. Biol. 49, 899-905 (2003).
  6. Boyum, A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1. 97, 77-89 (1968).
  7. Chinetti-Gbaguidi, G., et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ. Res. 108, 985-995 (2011).
  8. Tonge, R., et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics. 1, 377-396 (2001).
  9. Shaw, J., et al. Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics. 3, 1181-1195 (2003).
  10. Dupont, A., et al. Application of saturation dye 2D DIGE proteomics to characterize proteins modulated by oxidized low density lipoprotein treatment of human macrophages. J. Proteome Res. 7, 3572-3582 (2008).
  11. Dupont, A., et al. Two-dimensional maps and databases of the human macrophage proteome and secretome. Proteomics. 4, 1761-1778 (2004).
  12. Acosta-Martin, A. E., et al. Impact of incomplete DNase I treatment on human macrophage analysis. Proteomics Clin. Appl. 3, 1236-1246 (2009).
  13. Acosta-Martin, A. E., Lane, L. Combining bioinformatics and MS-based proteomics: clinical implications. Expert Rev Proteomics. , (2014).
  14. Boytard, L., et al. Role of proinflammatory CD68+MR- macrophages in peroxiredoxin-1 expression and in abdominal aortic aneurysms in humans. Arterioscler. Thromb. Vasc. Biol. 33, 431-438 (2013).
check_url/52219?article_type=t

Play Video

Cite This Article
Bouvet, M., Turkieh, A., Acosta-Martin, A. E., Chwastyniak, M., Beseme, O., Amouyel, P., Pinet, F. Proteomic Profiling of Macrophages by 2D Electrophoresis. J. Vis. Exp. (93), e52219, doi:10.3791/52219 (2014).

View Video