Summary

一个<em>在体外</em>酶测定来测量转录抑制作用镓(Ⅲ)和H<sub> 3</sub> -5,10,15-三(五氟苯基)corroles

Published: March 18, 2015
doi:

Summary

镓(Ⅲ)5,10,15-(三)pentafluorophenylcorrole和其游离碱类似物显示出低的微摩尔细胞的细胞毒性。这个手稿描述的RNA转录反应中,成像的RNA用溴化乙锭染色的凝胶,并用UV-Vis光谱进行定量的RNA,为了通过corroles评估转录抑制和演示评价抗癌候选属性的一个简单的方法。

Abstract

化疗通常涉及广谱细胞毒性剂与许多副作用和有限的定位。 Corroles是一类表现出微分细胞抑制和细胞毒特性在特定细胞系中,根据不同的螯合金属和官能团的身份四吡咯大环化合物的。对特定的细胞功能化corroles独特的行为引入靶向化疗的可能性。

许多抗癌药物是通过它们抑制RNA的转录的能力进行评估。这里,我们提出一个一步一步协议用于RNA转录的已知和潜在抑制剂的存在。的转录反应的RNA产物通过凝胶电泳和UV-Vis光谱评价提供潜在的抗癌候选药物的抑制特性的信息,并与修改的测定中,更多关于它们的作用机制。

小已知大约corrole细胞毒性作用的分子机制。在这个实验中,我们考虑两个corrole化合物:镓(Ⅲ)5,10,15-(三)pentafluorophenylcorrole(镓(TPFC))和游离碱类似物5,10,15-(三)pentafluorophenylcorrole(TPFC)。一种RNA转录测定法用于检查corroles的抑制性质。五个转录反应制备:DNA用放线菌素D,雷公藤,镓(TPFC),TPFC在[复]处理:[模板DNA碱基]比为0.01,分别与未处理的对照组。

转录反应4小时后,用琼脂糖凝胶电泳和UV-Vis光谱进行分析。有明显的抑制作用嘎(TPFC),放线菌素D,和雷公藤。

该RNA转录测定法可以被修改通过改变抗癌复杂,DNA或聚合酶的浓度,以提供更详细的机理,或通过培养该DNA聚合酶或与完井XES前RNA转录;这些修改将涉及DNA或酶的抑制机制之间的区别。加入复合后的RNA转录可以被用来测试该络合物是否降解或水解的RNA。该测定也可以用于研究额外的抗癌候选。

Introduction

化疗通常涉及广谱细胞毒性剂与不期望的副作用和有限的定位,但与癌症生物学的更多的理解,存在用于抗癌剂不断增加的需求,以更高的癌症靶向功效和副作用较少。1人类癌细胞经常成为依赖单一活化或过表达癌基因的生存。2因此,许多抗癌药物是通过它们抑制RNA的转录的能力进行评估。治疗,阻止这些转化基因的表达是有效的消除癌细胞,并导致细胞死亡。3转化的细胞是在RNA的转录干扰更敏感比是相应的正常细胞。4抗癌药物抑制转录预期选择性地抑制这是必要的癌症细胞生存的癌基因的5因此表达,RNA的转录我nhibition是要找出潜在的抗癌候选药物,并进一步了解其作用机制的有效途径。此协议表明镓(TPFC)抑制RNA的转录顺序相同的化疗药物放线菌素D和雷公藤上;类似的比较,可以使用此协议与其他抗癌候选药物进行。放线菌素D是一种RNA的转录抑制剂通常用于治疗妊娠滋养细胞癌,睾丸癌,肾母细胞瘤,rhabdomyosacoma和尤因氏肉瘤6。放线菌素D被用于癌症治疗近五十年,因为它是第一个被FDA批准在1964.Triptolide是已经在体外和各种肿瘤携带动物模型30年已经研究选择性转录抑制剂。7

corroles的两亲性质的大环赋予比其他类药物显著优点,如小分子或生物第8-14的大环字符允许蜂窝渗透性大于预期对于如此大的分子,它们是大到足以与大分子的表面,如那些蛋白质的相互作用。8 Corroles已知以形成紧密的非共价配合物的生物分子和药物。10除了corrole框架的固有细胞毒性,我们已经表明,磺化corrole充当化学治疗剂与载体分子,特别是DNA的嵌入蒽环类药物阿霉素。当磺化corrole物共施用阿霉素,3倍的增强中阿霉素的IC 50观察到,DU-145细胞。9 corrole框架是稳定的,并具有固有的吸光度和荧光性质是,官能化时,经过独特的吸光度的变化可用于表征。10官能支架的不固有地affec吨的corrole,9-15的光物理性质,但,因为看到带有磺化corrole,选择性地修改所述corrole框架可以基本上改变其生物学特性。16,我们先前评估6 metallocorroles与七人癌细胞系。结果表明,对人体癌细胞的毒性是依赖于特定的金属离子,以及官能团取代。例如,磺化镓corroles经历高的细胞摄取和渗透选择性进入脑转移性前列腺癌细胞(DU-145)的核;同样corrole,虽然它不渗入的其他细胞系的细胞核中,显示出更大的细胞毒性乳腺癌(MDA-MB-231),黑色素瘤(SK-MEL-28),和卵巢(OVCAR-3)的癌细胞比前列腺癌。9

初始基于细胞的试验表明,这些化合物显示出希望作为抗癌治疗剂,其优点菲尔特呃调查行动的机制。转录抑制观察到某些有机金属配合物17-27,我们试图研究这个过程中作为一个可能的机制corrole家庭的细胞毒行为。此转录测定法提供了用于评估转录的抑制,这将导致对这些分子在活细胞中的效应的更详细的信息的简单的,廉价且简便的方法。

这里,镓的转录抑制(Ⅲ)5,10,15-(三)pentafluorophenylcorrole(镓(TPFC))和它的游离碱类似物5,10,15-(三)pentafluorophenylcorrole(TPFC)( 图1)进行测试。不像一些过渡金属配合物,镓(III)为氧化还原非活性,因此不直接参与的氧化还原类的代谢途径的氧化还原过程。28无论如何,镓(Ⅲ)并不表现出细胞毒特性,并已被研究用于治疗目的。镓是第二个最有前途的金​​属铂之后抗癌治疗,并经历了多次的研究和调查;硝酸盐和氯化物镓盐在防治肝癌,淋巴瘤,膀胱癌等多种疾病的临床试验进行了评估。29-34镓(III),因此理想的抗癌corrole研究。初始数据表明镓(TPFC)和TPFC具有低GI 50,所需的药物浓度,以抑制的最大细胞增殖的50%,与各种癌细胞株(参见图2);这肯定了关于这两种化合物的进一步的实验的有效性,以确定它们抑制性质。我们比较这些化合物与普通抗癌药物放线菌素D和雷公藤甲素。放线菌素D插层的DNA,抑制RNA的伸长率,并诱导细胞凋亡的某些细胞系在皮摩尔浓度6,35-37雷公藤已经显示出抑制肿瘤生长。它与人XPB / ERCC3,亚基Ø˚F转录因子TFIIH,从而抑制RNA聚合酶II的活性。6-7,38-40

虽然众所周知,corroles表现出细胞毒性性质,存在关于从官能化所产生的不同的机制的信息很少。 RNA转录抑制Corrole将提供他们与生物大分子的相互作用更大的洞察力。已知结合至DNA的其它配合物,如二铑(II,II)配合物,铬(III)络合物,钌(II)多吡啶配合物,铑(Ⅲ)配合物,以及各种其他经受RNA的转录测定法,18- 27致使其与生物大分子相互作用的更深入的了解。这个浅显的和广泛使用的实验也是一个不错的初步测试,以评估特定分子的细胞毒性特性并确定它是否值得进一步的生物测试。所述RNA转录测定法也可进行多种修饰,如varyin克使用的化合物或酶的数量;变的潜伏期,反应时间和采样时间点;并改变所述DNA模板长度和序列,其它感兴趣的变量之间的,从而有可能提供大量的数据。这转录实验也一应俱全,与提供一切必要的反应组分实惠的套装,虽然组件可以购买并单独准备。在这些实验中,我们使用已知具有高产市售的试剂盒。41

为了评估转录的抑制,我们使用两种方法:琼脂糖凝胶电泳和UV-Vis光谱。琼脂糖凝胶电泳是分离,识别和纯化0.5至25-kb的DNA和RNA片段的简单而有效的方法。42 UV-Vis光谱可用于确定浓度和RNA的纯度。43

Protocol

注:当与RNA的工作保持一个清洁的工作环境,避免污染DNA酶和RNA酶的酶降解DNA和RNA。确保枪头和管是DNA酶和RNA酶。这也有利于向下擦拭表面的实验室和设备,如移液管,管人等具有净化解决方案。 1. RNA转录与Corrole治疗制备corrole和抑制剂化合物在0.01:[DNA]:的[复杂] 1的摩尔比。 注:在本例中,该比例为4.3 fmol的复杂:0.43皮摩尔DNA,其中所用的DNA模板是从E….

Representative Results

RNA转录定性琼脂糖凝胶电泳评定 琼脂糖凝胶电泳用于图像转录的RNA。结合后溴化乙锭荧光(λEM = 605纳米,λ= 前 210纳米,285纳米)的RNA 46允许成像。在凝胶较暗条带对应于更高浓度的RNA。如果放线菌素D,雷公藤,或任corrole复杂抑制RNA的转录,产生的RNA的降低,并且带将出现更轻。使用此概念,相对抑制进行评估。 …

Discussion

该测定表明,添加Ga(TPFC)的抑制RNA的转录可比已知的DNA结合抗癌络合物放线菌素D和雷公藤。嘎(TPFC)(GI 50 = 58.1-154.7μM)的细胞毒性行为可能由于其抑制性能。因为没有转录抑制中观察到TPFC,TPFC的细胞毒性是不是由于RNA的转录抑制,但是由于尚未研究其他手段。

在执行了4转录反应,DNA用放线菌素D,雷公藤,TPFC或Ga(TPFC)处理,在[复]:[模板DNA碱基]为0.01,分别…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们衷心感谢辛迪N.赵医生的帮助,凝胶电泳,安迪周和迈克尔Grodick的DNA和限制性内切酶的慷慨捐赠。我们非常感谢J.希思教授和D.测机教授慷慨的访问设备和材料。我们感谢卡恩Sorasaenee博士有益的建议。我们感谢玛丽H.唐创建在视频的示意图中使用的插图。资金由强生公司和USC Y86786提供。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Actinomycin D Sigma-Aldrich A1410 Store at 2-8 °C , protect from light
Triptolide Sigma-Aldrich T3652 Store at 2-8 °C , protect from light
nuclease-free H2 Life Technologies AM9938
MEGAscript T7 Transcription Kit Life Technologies AM1334 Store at –20 °C 
Ethidium Bromide Sigma-Aldrich E7637 CAUTION: For proper handling procedures of ethidium bromide, please see: http://www.sciencelab.com/msds.php?msdsId=9927667
Tris Acetate Sigma-Aldrich T6025
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich EDS
UltraPure Agarose Life Technologies 16500-100
mini Quick Spin RNA Columns Roche Life Science 11814427001 Store at 2-8 °C , do not freeze
1 kb DNA Ladder New England Biolabs N3232S Store at –20 °C 

References

  1. Weinstein, I. B. Addiction to oncogenes—The Achilles heel of cancer. Science. 297, 63-64 (2002).
  2. Derheimer, F. A., Chang, C. W., Ljungman, M. Transcription inhibition: A potential strategy for cancer therapeutics. Eur. J. Cancer. 41 (16), 2569-2576 (2005).
  3. Koumenis, C., Giaccia, A. Transformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol. Cell. Biol. 17 (12), 7306-7316 (1997).
  4. Stellrecht, C. M., Chen, L. S. Transcription Inhibition as a Therapeutic Target for Cancer. Cancers. 3 (4), 4170-4190 (2011).
  5. Bensaude, O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity. Transcription. 2 (3), 103-108 (2011).
  6. Liu, Q. Triptolide and its expanding multiple pharmacological functions. International Immunopharmacology. 11 (3), 377-383 (2011).
  7. Mahammed, A., Gray, H. B., Weaver, J. J., Sorasaenee, K., Gross, Z. Amphiphilic corroles bind tightly to human serum albumin. Bioconjugate Chemistry. 15 (4), 738-746 (2004).
  8. Lim, P. Differential cytostatic and cytotoxic action of metallocorroles against human cancer cells: Potential platforms for anticancer drug development. Chemical Research in Toxicology. 25 (2), 400-409 (2012).
  9. Bendix, J., Dmochowski, I. J., Gray, H. B., Mahammed, A., Simkhovich, L., Gross, Z. Structural, electrochemical, and photophysical properties of gallium(III) 5,10,15-tris(pentafluorophenyl)corrole. Angewandte Chemie-International Edition. 39 (22), 4048-4051 (2000).
  10. Hwang, J. Y., Gross, Z., Gray, H. B., Medina-Kauwe, L. K., Farkas, D. L. Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo. Journal of Biomedical Optics. 16 (6), 1-6 (2011).
  11. Agadjanian, H. Tumor detection and elimination by a targeted gallium corrole. Proceedings of the National Academy of Sciences of the United States of America. 106 (15), 6105-6110 (2009).
  12. Hwang, J. Y. Photoexcitation of tumor-targeted corroles induces singlet oxygen-mediated augmentation of cytotoxicity. Journal of Controlled Release. 163 (3), 368-373 (2012).
  13. Hwang, J. Y., et al. Investigating photoexcitation-induced mitochondrial damage by chemotherapeutic corroles using multimode optical imaging. Journal of Biomedical Optics. 17 (1), 11 (2012).
  14. Hwang, J. Y. A Mechanistic Study of Tumor-Targeted Corrole Toxicity. Molecular Pharmaceutics. 8 (6), 2233-2243 (2011).
  15. Saltsman, I., Mahammed, A., Goldberg, I., Tkachenko, E., Botoshansky, M., Gross, Z. Selective substitution of corroles: Nitration, hydroformylation, and chlorosulfonation. Journal of the American Chemical Society. 124 (25), 7411-7420 (2002).
  16. Gershman, Z., Goldberg, I., Gross, Z. DNA Binding and Catalytic Properties of Positively Charged Corroles. Angewandte Chemie. 46 (23), 4320-4324 (2007).
  17. Fu, P. K., Bradley, P. M., Turro, C. Stabilization of duplex DNA structure and suppression of transcription in vitro by bis(quinone diimine) complexes of rhodium(III) and ruthenium(II). Inorganic Chemistry. 42 (3), 878-884 (2003).
  18. Sorasaenee, K., Fu, P. K. -. L., Angeles-Boza, A. M., Dunbar, K. R., Turro, C. Inhibition of Transcription in Vitro by Anticancer Active Dirhodium(II) Complexes. Inorg. Chem. 42 (4), 1267-1271 (2003).
  19. Aguirre, J. D., Lutterman, D. A., Angeles-Boza, A. M., Dunbar, K. R., Turro, C. Effect of axial coordination on the electronic structure and biological activity of dirhodium(II,II) complexes. Inorganic Chemistry. 46 (18), 7494-7502 (2007).
  20. Raja, N. S., Nair, B. U. Chromium(III) complexes inhibit transcription factors binding to DNA and associated gene expression. Toxicology. 251 (1-3), 61-65 (2008).
  21. Gao, F., Chen, X., Wang, J. Q., Chen, Y., Chao, H., Ji, L. N. In Vitro Transcription Inhibition by Ruthenium(II) Polypyridyl Complexes with Electropositive Ancillary Ligands. Inorganic Chemistry. 48 (13), 5599-5601 (2009).
  22. Chen, X., Gao, F., Zhou, Z. X., Yang, W. Y., Guo, L. T., Ji, L. N. Effect of ancillary ligands on the topoisomerases II and transcription inhibition activity of polypyridyl ruthenium(II) complexes. Journal of Inorganic Biochemistry. 104 (5), 576-582 (2010).
  23. Chen, X., Gao, F., Yang, W. Y., Sun, J., Zhou, Z. X., Ji, L. N. Effects of intercalative ligands on the DNA binding, DNA topoisomerase II and DNA transcription inhibition of polypyridyl ruthenium(II) complexes. Inorganica Chimica Acta. 378 (1), 140-147 (2011).
  24. Chen, X., Gao, F., Yang, W. Y., Zhou, Z. X., Lin, J. Q., Ji, L. N. Structure-activity relationship of polypyridyl ruthenium(II) complexes as DNA intercalators, DNA photocleavage reagents, and DNA topoisomerase and RNA polymerase inhibitors. Chemistry & Biodiveristy. 10 (3), 367-384 (2013).
  25. Chifotides, H. T., Fu, P. K., Dunbar, K. R., Turro, C. Effect of equatorial ligands of dirhodium(II,II) complexes on the efficiency and mechanism of transcription inhibition in vitro. Inorganic Chemistry. 43 (3), 1175-1183 (2004).
  26. Pauly, M., Kayser, I., Schmitz, M., Dicato, M., Del Guerzo, A., Kolber, I., Moucheron, C., Kirsch-De Mesmaeker, A. In vitro inhibition of gene transcription by novel photo-activated polyazaaromatic ruthenium(II) complexes. Chemical Communications. 10, 1086-1087 (2002).
  27. Richardson, D. R. Iron and gallium increase iron uptake from transferring by human melanoma cells: Further examination of the ferric ammonium citrate-activated iron uptake process. Biochimica et Biophysica Acta. 1536 (1), 43-54 (2001).
  28. Collery, P., Keppler, B., Madoulet, C., Desoize, B. Gallium in cancer treatment. Critical Reviews in Oncology / Hematology. 42 (3), 283-296 (2002).
  29. Hedley, D. W., Tripp, E. H., Slowiaczek, P., Mann, G. J. Effect of gallium on DNA synthesis by human T-cell lymphoblasts. Cancer Research. 48 (11), 3014-3018 (1988).
  30. Chitambar, C. R., Narasimhan, J., Guy, J., Sem, D. S., O’Brien, W. J. Inhibition of ribonucleotide reductase by gallium in murine leukemic L1210 cells. Cancer Research. 51, 6199-6201 (1991).
  31. Seidman, A. D. Continuous infusion gallium nitrate for patients with advanced refractory urothelial tract tumors. Cancer. 68, 2561-2565 (1991).
  32. Chitambar, C. R. Medical applications and toxicities of gallium compounds. International Journal of Environmental Research and Public Health. 7 (5), 2337-2361 (2010).
  33. Chitambar, C. R. Gallium-containing anticancer compounds. Future Medicinal Chemistry. 4 (10), 1257-1272 (2012).
  34. Trask, D. K., Muller, M. T. Stabilization of type I topoisomerase-DNA covalent complexes by actinomycin D. Proceedings of the National Academy of Sciences of the United States of America. 85 (5), 1417-1421 (1988).
  35. Chang, T. C., Tsai, L. C., Hung, M. W., Chu, L. L., Chu, J. T., Chen, Y. C. Effects of transcription and translation inhibitors on a human gastric carcinoma cell line. Potential role of Bcl-X(S) in apoptosis triggered by these inhibitors. Biochemical Pharmacology. 53 (7), 969-977 (1997).
  36. Mischo, H. E., Hemmerich, P., Grosse, F., Zhang, S. Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. The Journal of Biological Chemistry. 280 (10), 9586-9594 (2005).
  37. Titov, D. V. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nature Chemical Biology. 7 (3), 182-188 (2011).
  38. Leuenroth, S. J., Crews, C. M. Triptolide-induced transcriptional arrest is associated with changes in nuclear substructure. Cancer Researcg. 68 (13), 5257-5266 (2008).
  39. Vispé, S. Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA. Molecular Cancer Therapeutics. 8 (10), 2780-2790 (2009).
  40. . MEGAscript T7 Transcription Kit User Guide. Current Protocols in Molecular Biology. , (2014).
  41. Fleige, S., Pfaffl, M. W. RNA integrity and the effect on the real-time qRT-PCR performance. Molecular Aspects of Medicine. 27 (2-3), 126-139 (2006).
  42. . . Quick Spin Columns Protocol. , (2013).
  43. . . RNA quality control. , (2007).
  44. Sabris, R. W. . Handbook of biological dyes and stains: synthesis and industrial application. , (2010).
check_url/52355?article_type=t

Play Video

Cite This Article
Tang, G. Y., Pribisko, M. A., Henning, R. K., Lim, P., Termini, J., Gray, H. B., Grubbs, R. H. An In Vitro Enzymatic Assay to Measure Transcription Inhibition by Gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles. J. Vis. Exp. (97), e52355, doi:10.3791/52355 (2015).

View Video