Summary

的肿瘤特异性内皮细胞的分离与培养扩展

Published: October 14, 2015
doi:

Summary

We report a reliable method to isolate and culture primary tumor-specific endothelial cells from genetically engineered mouse models.

Abstract

新鲜分离的肿瘤特异性内皮细胞(TEC)可以用来探索肿瘤血管生成的分子机制,并用作体外模型用于开发新的血管生成抑制剂用于癌症。然而,长期鼠内皮细胞(EC)的体外扩增是具有挑战性,因为文化的表型漂移(内皮细胞间质转化),并污染非欧共体。这是为TEC其通过在培养共纯化的成纤维细胞或肿瘤细胞容易outcompeted尤其如此。在这里,高保真的隔离方法,它利用免疫磁珠富集加上菌落筛选和体外扩增的描述。这种方法产生纯乳油级分是完全不含污染基质或肿瘤细胞。它也表明,谱系追踪CDH5 CRE:ZsGreen升/秒/升报告小鼠,与该协议使用本文中所描述,是一种宝贵的工具来验证细胞纯度从这些小鼠孤立欧盟的菌落表现出持久的文化和灿烂的ZsGreen荧光。

Introduction

内皮细胞(EC)是实体肿瘤的发展过程中是至关重要的。从休眠中的肿瘤血管生成开关来传播和远处转移的播种开始,欧共体形成提供血液,氧气管道,和营养,以维持肿瘤生长1。作为最近提出,EC也有灌注无关的功能,并形成一个支持癌症干细胞和其他肿瘤基质细胞2-5的生长利基。因此,高纯度的肿瘤特异性EC(TEC) 进行体外培养允许常规功能研究,将揭示介导肿瘤血管生成和肿瘤细胞串扰新型的分子机制的光。

EC是高度专业化的视原产6的组织。由于不同的肿瘤类型的异质性和肿瘤微环境,TEC也可以显示反映肿瘤特异性专业化ö独特的功能f显示血管。例如,有在TEC中的基因表达签名来自不同类型或肿瘤7,8-牌号分离引人注目变性。然而,频繁的共纯化非欧共体,特别是肿瘤相关的成纤维细胞和肿瘤细胞,与TEC的可混淆的全基因组表达分析。这些不需要的细胞类型是依赖于长期 TEC培养体外扩增研究,特别是有问题的。

这里介绍的是,始终从生产肿瘤和其他组织的纯EC文化高保真方法。继欧盟分数和去除共纯化的非欧共体的免疫柱富集,一个额外的克隆环一步捕捉到纯粹的欧共体殖民地使用9。各菌落可以在培养物中多次传代而不会污染非EC中的出现进行扩展。这种方法也产生多重EC克隆从单一孤立的过程,这是理想的内切的研究thelial异质性。另外,它表明,CDH5 CRE:ZsGreen升/秒/升报告小鼠是一种有价值的工具,用于产生“命运映射”和擦掉标记EC其中保持ZsGreen荧光培养10。有了小幅调整方案,这种方法应该适应不同的肿瘤类型或正常组织。

Protocol

以下协议进行根据实验动物医学系在北卡罗莱纳大学教堂山分校制定的准则。 1.准备以下材料和试剂开始之前通过补充400毫升低葡萄糖制备乳油媒体(1克/升D-葡萄糖或LG)的Dulbecco氏改良Eagle氏用50ml热灭活的胎牛血清,将50ml的Nu-血清IV,加入5ml抗菌 – 抗霉菌培养基(DMEM),和hFGF,血管内皮生长因子,表皮生长因子,R3-IGF-1,和肝素部件从商业试剂盒。 制成500毫…

Representative Results

统代表了总细胞群体中大多数成人组织11只有轻微的一小部分。因此重要的是充分消化收获组织成单细胞悬浮液,以确保从细胞外基质(ECM)和结缔组织的最大释放乳油。根据我们的经验,CD31介导的免疫选择仅提供丰富的,但不是纯统的部分;因此,另一个关键步骤是物理去除使用克隆环(图1)EC菌落共纯化非EC和选择/扩张。例如,当CD31富集EC铺板无需进一步菌落筛选,非欧?…

Discussion

由于获 ​​得纯TEC初级培养物,许多体外研究替代TEC与市售的EC系或原乳油例如人脐静脉EC(HUVEC)13的困难。然而,从正常组织这些EC人群可能只能作为TEC从正常的同行明显不同的代理。例如,TEC表型上和功能异常在体内和一些这些异常可能是可透射体外 14-18。 TEC有异常生长,迁移和分化的能力,并与CD31 +肿瘤细胞可能聚结形成血管样结构16,19,20。…

Disclosures

The authors have nothing to disclose.

Acknowledgements

ACD is supported by a grant from the National Institute of Health (R01-CA177875). LX is a fellow in the HHMI-funded translational medicine program at UNC Chapel Hill. JVM is supported by a T32 pre-doctoral fellowship from the Integrative Vascular Biology Program at UNC Chapel Hill. We thank Clayton Davis for assistance with confocal microscopy.

Materials

Antibiotic-Antimycotic  Sigma-Aldrich A5955
Dulbecco's Modified Eagle's medium (1 g/L D-glucose) (LG-DMEM) Gibco 11885-084
EGM-2 Bullet Kit  Lonza CC4176 Not all components used
Fetal bovine serum (Hyclone) Thermo Scientific SH30071.03 Heat inactivated at 56°C for 30 min
Nu-Serum IV Corning CB-51004
Hank's Balanced Salt Solution (HBBS) Gibco 14175-095
Phosphate-buffered saline (PBS) Gibco 14190-144
FACS buffer  0.5 % BSA and 2 mM EDTA in PBS, filtered through a 0.22 μm filter
75% v/v ethanol for disinfection
Anti-PE microbeads  Miltenyi Biotech 130-048-801
Bovine serum albumin (BSA) fraction V, 7.5% Gibco 15260-37
Cell freezing media (Bambanker) Wako Chemicals 302-14681
Collagenase type II   Worthington Biochemical LS004176 Make stock concentration 2 mg/ml in HBSS
Deoxyribonuclease I (DNase) Worthington Biochemical LS002004 Make stock concentration 1 mg/mL in PBS
Dil-Ac-LDL Biomedical Technologies BT-902
EDTA, 0.5M, pH 8.0 Cellgro 46-034-CL
Enzymatic cell detachment solution (Accutase) Sigma-Aldrich A6964-100ML
Gelatin, 2 % in water, tissue culture grade Sigma-Aldrich G1393-100ML Dilute in PBS to make 0.5 % gelatin solution
Mouse FcR Blocking Reagent  Miltenyi Biotech 130-092-575
Neutral protease (Dispase) Worthington Biochemical LS02104 Make stock concentration 2.5 U/mL in HBSS
PE-rat anti-mouse CD31 antibody BD Pharmingen 553373
RBC lysis buffer (BD Pharm Lyse) BD Pharmingen 555899
Sterile water
Trypan blue, 0.4 %  Life Technologies 15250-061
10 mm tissue culture dishes Corning
15 mL conical tubes (sterile) Corning
50 mL conical tubes (sterile)  Corning
6-well tissue culture plates Corning
Tissue-dissociator tubes (gentleMACS) C tubes)  Miltenyi Biotech 130-093-237
Cell Separator  (MidiMACS) Miltenyi Biotech 130-042-302
Cell strainer 100 μm  Corning 352360
Cloning rings (assorted sizes) Bel-Art Products 378470000
Cryotubes Thermo Scientific
Dissecting board Sterilize or disinfect with 75% v/v ethanol before use 
Dissecting forceps and scissors Sterilize before use 
Dissecting pins 2" Sterilize before use 
FACS tubes with 35 μm filter cap Corning 352235
Filter cup (Stericup, 0.22 μm) Millipore SCGPU05RE
Fine-tip marker
Hemocytometer
LS Columns Miltenyi Biotech 130-042-401
Magnetic Multistand Miltenyi Biotech 130-042-303
Tissue adhesive (Vetbond) 3M 1469SB
Centrifuge Eppendorf 5810R Or a centrifuge with similar capacity for 15 mL and 50 mL conical tube centrifugation
Tissue culture hood
Tissue dissociator (gentleMACS) Miltenyi Biotech 130-093-235 Preset program "m_impTumor_01" used for tissue dissociation 
Liquid nitrogen freezer
Microplate or rotary shaker
Phase contrast light microscope

References

  1. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175 (3), 409-416 (1972).
  2. Butler, J. M., Kobayashi, H., Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer. 10 (2), 138-146 (2010).
  3. Franses, J. W., Baker, A. B., Chitalia, V. C., Edelman, E. R. Stromal endothelial cells directly influence cancer progression. Sci. Transl. Med. 3 (66), 66ra5 (2011).
  4. Calabrese, C., et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 11 (1), 69-82 (2007).
  5. Beck, B., et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 478 (7369), 399-403 (2011).
  6. Aird, W. C. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2 (1), a006429 (2012).
  7. Dudley, A. C. Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2 (3), a006536-a006536 (2012).
  8. Aird, W. C. Molecular heterogeneity of tumor endothelium. Cell Tissue Res. 335 (1), 271-281 (2009).
  9. Voyta, J. C., Via, D. P., Butterfield, C. E., Zetter, B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99 (6), 2034-2040 (1984).
  10. Zovein, A. C., et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 3 (6), 625-636 (2008).
  11. Beijnum, J. R., Rousch, M., Castermans, K., van der Linden, E., Griffioen, A. W. Isolation of endothelial cells from fresh tissues. Nat. Protoc. 3 (6), 1085-1091 (2008).
  12. Xiao, L., Harrell, J. C., Perou, C. M., Dudley, A. C. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis. 17 (3), 511-518 (2014).
  13. Beijnum, J. R., et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood. 108 (7), 2339-2348 (2006).
  14. McDonald, D. M., Choyke, P. L. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9 (6), 713-725 (2003).
  15. Baluk, P., Hashizume, H., McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genetics Dev. 15 (1), 102-111 (2005).
  16. Ghosh, K., et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl. Acad. Sci. 105 (32), 11305-11310 (2008).
  17. Amin, D. N., Hida, K., Bielenberg, D. R., Klagsbrun, M. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res. 66 (4), 2173-2180 (2006).
  18. Hida, K., et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64 (22), 8249-8255 (2004).
  19. Dudley, A. C., et al. Calcification of multipotent prostate tumor endothelium. Cancer Cell. 14 (3), 201-211 (2008).
  20. Dunleavey, J. M., et al. Vascular channels formed by subpopulations of PECAM1(+) melanoma cells. Nat. Comm. 5, 5200 (2014).
  21. St Croix, B., et al. Genes expressed in human tumor endothelium. Science. 289 (5482), 1197-1202 (2000).
  22. Bhati, R., et al. Molecular characterization of human breast tumor vascular cells. Am. J. Pathol. 172 (5), 1381-1390 (2008).
  23. Johnson, C. S., Chung, I., Trump, D. L. Epigenetic silencing of CYP24 in the tumor microenvironment. J. Steroid Biochem. Mol. Biol. 121 (1-2), 338-342 (2010).
  24. Gimbrone, M. A., Cotran, R. S., Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60 (3), 673-684 (1974).
  25. Burridge, K. A., Friedman, M. H. Environment and vascular bed origin influence differences in endothelial transcriptional profiles of coronary and iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 299 (3), H837-H846 (2010).
  26. Zhang, J., Burridge, K. A., Friedman, M. H. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am. J. Physiol. Heart Circ. Physiol. 295 (4), H1556-H1561 (2008).
  27. Paruchuri, S., et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ. Res. 99 (8), 861-869 (2006).
  28. Wylie-Sears, J., Aikawa, E., Levine, R. A., Yang, J. -. H., Bischoff, J. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 31 (3), 598-607 (2011).
  29. Ginsberg, M., et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell. 151 (3), 559-575 (2012).
  30. Sapino, A., et al. Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast. J. Path. 194 (2), 254-261 (2001).
  31. Maddaluno, L., et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 498 (7455), 492-496 (2013).
  32. Cooley, B. C., et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med. 6 (227), 227ra34-227ra34 (2014).
  33. Garcia, J., et al. Tie1 deficiency induces endothelial-mesenchymal transition. EMBO Rep. 13 (5), 431-439 (2012).
  34. Xiao, L., et al. Tumor endothelial cells with distinct patterns of TGFβ-driven endothelial-to-mesenchymal transition. Cancer Res. 75 (7), 1244-1254 (2015).
  35. Kusumbe, A. P., Ramasamy, S. K., Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507 (7492), 323-328 (2014).
  36. Wang, L., et al. Identification of a clonally expanding haematopoietic compartment in bone marrow. EMBO J. 32 (2), 219-230 (2012).
  37. Sawamiphak, S., et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 465 (7297), 487-491 (2010).
  38. Chi, J. -. T., et al. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. 100 (19), 10623-10628 (2003).
  39. Nolan, D. J., et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell. 26 (2), 204-219 (2013).
  40. Ingram, D. A., et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 105 (7), 2783-2786 (2005).
check_url/53072?article_type=t

Play Video

Cite This Article
Xiao, L., McCann, J. V., Dudley, A. C. Isolation and Culture Expansion of Tumor-specific Endothelial Cells. J. Vis. Exp. (104), e53072, doi:10.3791/53072 (2015).

View Video