Summary

Isolatie en Cultuur Uitbreiding van Tumor-specifieke endotheelcellen

Published: October 14, 2015
doi:

Summary

We report a reliable method to isolate and culture primary tumor-specific endothelial cells from genetically engineered mouse models.

Abstract

Vers geïsoleerde tumorspecifieke endotheelcellen (TEC) kan worden gebruikt om de moleculaire mechanismen van tumorangiogenese staand en dienen als een in vitro model voor de ontwikkeling van nieuwe angiogeneseremmers voor kanker. Echter, de lange-termijn in vitro expansie van muis endotheelcellen (EC) is een uitdaging vanwege fenotypische drift in kweek (endotheel-to-mesenchymale overgang) en verontreiniging met niet-EC. Dit geldt vooral voor TEC die gemakkelijk worden weggeconcurreerd door co-gezuiverd fibroblasten of tumorcellen in kweek. Hier wordt een high fidelity isolatiewerkwijze die gebruik maken van immunomagnetische verrijking gekoppeld kolonieselectie en in vitro expansie neemt beschreven. Deze aanpak levert pure EG fracties die volledig vrij zijn van verontreinigende stromale of tumorcellen. Ook is aangetoond dat lineage getraceerd Cdh5 cre: ZsGreen l / s / l reporter muizen gebruikt met de hierin beschreven protocol, een waardevol hulpmiddel om cellen te controlerenzuiverheid van de geïsoleerde EG kolonies van deze muizen tonen duurzaam en briljante ZsGreen fluorescentie in cultuur.

Introduction

Endotheelcellen (EC) zijn essentieel tijdens de groei van grote tumoren. Vanaf de start van de angiogene switch in slapende tumoren verspreiding en het zaaien van metastasen op afgelegen locaties, EG vormen de leidingen die het bloed, zuurstof en voedingsstoffen om 1 tumorgroei ondersteunen. Zoals onlangs gesuggereerd, EC ook perfusie-onafhankelijke functies en vormen een nis die de groei van kanker stamcellen en andere tumorale stromacellen 05/02 ondersteunt. Zo sterk gezuiverd tumor-specifieke EG (TEC) voor in vitro cultuur zorgt voor routine functionele studies die licht zal werpen op nieuwe moleculaire mechanismen bemiddelen tumor angiogenese en overspraak met tumorcellen.

EC zijn zeer gespecialiseerde afhankelijk van het weefsel van oorsprong 6. Vanwege de heterogeniteit van verschillende tumortypes en de tumor micro-omgeving, kan TEC ook unieke eigenschappen die een tumor-specifiek specialisatie o weerspiegelen tonenf het vaatstelsel. Zo is er opvallende variatie in genexpressie handtekeningen TEC geïsoleerd van verschillende types of klassen van tumoren 7,8. Echter, kunnen frequente co-zuivering van niet-EG, in het bijzonder tumor-geassocieerde fibroblasten en tumorcellen, met TEC verwarren genoom-wijde expressie analyses. Deze ongewenste celsoorten zijn bijzonder problematisch studies die afhankelijk lange termijn in vitro expansie van TEC culturen.

Hier beschreven is een high-fidelity methode die consistent produceert zuivere cultures van EC tumoren en andere weefsels. Volgende kolom immunomagnetische verrijking van EG-fracties en verwijdering van co-gezuiverde niet-EG, een extra klonen-ring stap om pure EG kolonies wordt gebruikt 9 vast te leggen. Elke kolonie kan in de cultuur voor meerdere passages uit te breiden zonder de opkomst van verontreinigende niet-EG. Deze werkwijze levert ook meerdere EC klonen uit een isolatiewerkwijze, die ideaal is voor de studie van endothelial heterogeniteit. Daarnaast wordt aangetoond dat Cdh5 cre: ZsGreen l / s / l reporter muizen zijn een waardevol instrument voor het genereren van "-lot in kaart gebracht" en onuitwisbaar gemarkeerde EG, die ZsGreen fluorescentie in cultuur 10 te handhaven. Met kleine aanpassingen aan het protocol, moet deze methode aan te passen aan verschillende soorten tumoren of normale weefsels zijn.

Protocol

Het volgende protocol wordt uitgevoerd op basis van door het ministerie van Laboratory Animal Geneeskunde aan de Universiteit van North Carolina in Chapel Hill richtlijnen. 1. Bereid het volgende materiaal en reagentia Voordat u begint Bereid EC media door aanvulling 400 ml lage glucose (1 g / l D-glucose of LG) Dulbecco's gemodificeerd Eagle's medium (DMEM) met 50 ml hitte-geïnactiveerd foetaal runderserum, 50 ml Nu-Serum IV, 5 ml antibioticum-antimycoticum, en hFGF, VEG…

Representative Results

EG vormen slechts een kleine fractie van de totale celpopulatie in de meeste volwassen weefsels 11. Het is daarom belangrijk om volledig te verteren het geoogste weefsel in een enkele-celsuspensie die de maximale afgifte van EG extracellulaire matrix (ECM) en bindweefsel zorgt. In onze ervaring, CD31-gemedieerde immunomagnetische selectie biedt alleen verrijkt, maar niet zuiver EG fracties; dus een cruciale stap is fysische verwijdering van co-gezuiverde niet-EC en selectie / expansie van EG kolonies gebruik …

Discussion

Vanwege de moeilijkheden bij het ​​verkrijgen van zuivere primaire kweken TEC, veel in vitro studies TEC vervanging met commercieel verkrijgbaar EC lijnen of primaire EC zoals humane navelstreng EC (HUVEC) 13. Echter, kunnen deze EC populatie van normale weefsels alleen dienen als een proxy voor de TEC, die sterk afwijken van hun normale tegenhangers. Zo TEC fenotypisch en functioneel abnormale in vivo en sommige van deze afwijkingen kunnen overdraagbare in vitro 1…

Disclosures

The authors have nothing to disclose.

Acknowledgements

ACD is supported by a grant from the National Institute of Health (R01-CA177875). LX is a fellow in the HHMI-funded translational medicine program at UNC Chapel Hill. JVM is supported by a T32 pre-doctoral fellowship from the Integrative Vascular Biology Program at UNC Chapel Hill. We thank Clayton Davis for assistance with confocal microscopy.

Materials

Antibiotic-Antimycotic  Sigma-Aldrich A5955
Dulbecco's Modified Eagle's medium (1 g/L D-glucose) (LG-DMEM) Gibco 11885-084
EGM-2 Bullet Kit  Lonza CC4176 Not all components used
Fetal bovine serum (Hyclone) Thermo Scientific SH30071.03 Heat inactivated at 56°C for 30 min
Nu-Serum IV Corning CB-51004
Hank's Balanced Salt Solution (HBBS) Gibco 14175-095
Phosphate-buffered saline (PBS) Gibco 14190-144
FACS buffer  0.5 % BSA and 2 mM EDTA in PBS, filtered through a 0.22 μm filter
75% v/v ethanol for disinfection
Anti-PE microbeads  Miltenyi Biotech 130-048-801
Bovine serum albumin (BSA) fraction V, 7.5% Gibco 15260-37
Cell freezing media (Bambanker) Wako Chemicals 302-14681
Collagenase type II   Worthington Biochemical LS004176 Make stock concentration 2 mg/ml in HBSS
Deoxyribonuclease I (DNase) Worthington Biochemical LS002004 Make stock concentration 1 mg/mL in PBS
Dil-Ac-LDL Biomedical Technologies BT-902
EDTA, 0.5M, pH 8.0 Cellgro 46-034-CL
Enzymatic cell detachment solution (Accutase) Sigma-Aldrich A6964-100ML
Gelatin, 2 % in water, tissue culture grade Sigma-Aldrich G1393-100ML Dilute in PBS to make 0.5 % gelatin solution
Mouse FcR Blocking Reagent  Miltenyi Biotech 130-092-575
Neutral protease (Dispase) Worthington Biochemical LS02104 Make stock concentration 2.5 U/mL in HBSS
PE-rat anti-mouse CD31 antibody BD Pharmingen 553373
RBC lysis buffer (BD Pharm Lyse) BD Pharmingen 555899
Sterile water
Trypan blue, 0.4 %  Life Technologies 15250-061
10 mm tissue culture dishes Corning
15 mL conical tubes (sterile) Corning
50 mL conical tubes (sterile)  Corning
6-well tissue culture plates Corning
Tissue-dissociator tubes (gentleMACS) C tubes)  Miltenyi Biotech 130-093-237
Cell Separator  (MidiMACS) Miltenyi Biotech 130-042-302
Cell strainer 100 μm  Corning 352360
Cloning rings (assorted sizes) Bel-Art Products 378470000
Cryotubes Thermo Scientific
Dissecting board Sterilize or disinfect with 75% v/v ethanol before use 
Dissecting forceps and scissors Sterilize before use 
Dissecting pins 2" Sterilize before use 
FACS tubes with 35 μm filter cap Corning 352235
Filter cup (Stericup, 0.22 μm) Millipore SCGPU05RE
Fine-tip marker
Hemocytometer
LS Columns Miltenyi Biotech 130-042-401
Magnetic Multistand Miltenyi Biotech 130-042-303
Tissue adhesive (Vetbond) 3M 1469SB
Centrifuge Eppendorf 5810R Or a centrifuge with similar capacity for 15 mL and 50 mL conical tube centrifugation
Tissue culture hood
Tissue dissociator (gentleMACS) Miltenyi Biotech 130-093-235 Preset program "m_impTumor_01" used for tissue dissociation 
Liquid nitrogen freezer
Microplate or rotary shaker
Phase contrast light microscope

References

  1. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175 (3), 409-416 (1972).
  2. Butler, J. M., Kobayashi, H., Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer. 10 (2), 138-146 (2010).
  3. Franses, J. W., Baker, A. B., Chitalia, V. C., Edelman, E. R. Stromal endothelial cells directly influence cancer progression. Sci. Transl. Med. 3 (66), 66ra5 (2011).
  4. Calabrese, C., et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 11 (1), 69-82 (2007).
  5. Beck, B., et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 478 (7369), 399-403 (2011).
  6. Aird, W. C. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2 (1), a006429 (2012).
  7. Dudley, A. C. Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2 (3), a006536-a006536 (2012).
  8. Aird, W. C. Molecular heterogeneity of tumor endothelium. Cell Tissue Res. 335 (1), 271-281 (2009).
  9. Voyta, J. C., Via, D. P., Butterfield, C. E., Zetter, B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99 (6), 2034-2040 (1984).
  10. Zovein, A. C., et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 3 (6), 625-636 (2008).
  11. Beijnum, J. R., Rousch, M., Castermans, K., van der Linden, E., Griffioen, A. W. Isolation of endothelial cells from fresh tissues. Nat. Protoc. 3 (6), 1085-1091 (2008).
  12. Xiao, L., Harrell, J. C., Perou, C. M., Dudley, A. C. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis. 17 (3), 511-518 (2014).
  13. Beijnum, J. R., et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood. 108 (7), 2339-2348 (2006).
  14. McDonald, D. M., Choyke, P. L. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9 (6), 713-725 (2003).
  15. Baluk, P., Hashizume, H., McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genetics Dev. 15 (1), 102-111 (2005).
  16. Ghosh, K., et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl. Acad. Sci. 105 (32), 11305-11310 (2008).
  17. Amin, D. N., Hida, K., Bielenberg, D. R., Klagsbrun, M. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res. 66 (4), 2173-2180 (2006).
  18. Hida, K., et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64 (22), 8249-8255 (2004).
  19. Dudley, A. C., et al. Calcification of multipotent prostate tumor endothelium. Cancer Cell. 14 (3), 201-211 (2008).
  20. Dunleavey, J. M., et al. Vascular channels formed by subpopulations of PECAM1(+) melanoma cells. Nat. Comm. 5, 5200 (2014).
  21. St Croix, B., et al. Genes expressed in human tumor endothelium. Science. 289 (5482), 1197-1202 (2000).
  22. Bhati, R., et al. Molecular characterization of human breast tumor vascular cells. Am. J. Pathol. 172 (5), 1381-1390 (2008).
  23. Johnson, C. S., Chung, I., Trump, D. L. Epigenetic silencing of CYP24 in the tumor microenvironment. J. Steroid Biochem. Mol. Biol. 121 (1-2), 338-342 (2010).
  24. Gimbrone, M. A., Cotran, R. S., Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60 (3), 673-684 (1974).
  25. Burridge, K. A., Friedman, M. H. Environment and vascular bed origin influence differences in endothelial transcriptional profiles of coronary and iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 299 (3), H837-H846 (2010).
  26. Zhang, J., Burridge, K. A., Friedman, M. H. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am. J. Physiol. Heart Circ. Physiol. 295 (4), H1556-H1561 (2008).
  27. Paruchuri, S., et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ. Res. 99 (8), 861-869 (2006).
  28. Wylie-Sears, J., Aikawa, E., Levine, R. A., Yang, J. -. H., Bischoff, J. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 31 (3), 598-607 (2011).
  29. Ginsberg, M., et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell. 151 (3), 559-575 (2012).
  30. Sapino, A., et al. Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast. J. Path. 194 (2), 254-261 (2001).
  31. Maddaluno, L., et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 498 (7455), 492-496 (2013).
  32. Cooley, B. C., et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med. 6 (227), 227ra34-227ra34 (2014).
  33. Garcia, J., et al. Tie1 deficiency induces endothelial-mesenchymal transition. EMBO Rep. 13 (5), 431-439 (2012).
  34. Xiao, L., et al. Tumor endothelial cells with distinct patterns of TGFβ-driven endothelial-to-mesenchymal transition. Cancer Res. 75 (7), 1244-1254 (2015).
  35. Kusumbe, A. P., Ramasamy, S. K., Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507 (7492), 323-328 (2014).
  36. Wang, L., et al. Identification of a clonally expanding haematopoietic compartment in bone marrow. EMBO J. 32 (2), 219-230 (2012).
  37. Sawamiphak, S., et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 465 (7297), 487-491 (2010).
  38. Chi, J. -. T., et al. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. 100 (19), 10623-10628 (2003).
  39. Nolan, D. J., et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell. 26 (2), 204-219 (2013).
  40. Ingram, D. A., et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 105 (7), 2783-2786 (2005).
check_url/53072?article_type=t

Play Video

Cite This Article
Xiao, L., McCann, J. V., Dudley, A. C. Isolation and Culture Expansion of Tumor-specific Endothelial Cells. J. Vis. Exp. (104), e53072, doi:10.3791/53072 (2015).

View Video