Summary

Isolering och odling Expansion av Tumörspecifika endotelceller

Published: October 14, 2015
doi:

Summary

We report a reliable method to isolate and culture primary tumor-specific endothelial cells from genetically engineered mouse models.

Abstract

Nyligen isolerade tumörspecifika endotelceller (TEC) kan användas för att utforska molekylära mekanismer för tumörangiogenes och tjäna som en modell in vitro för att utveckla nya angiogeneshämmare för cancer. Det är dock en utmaning på lång sikt in vitro expansion av murina endotelceller (EG) på grund av fenotypisk drift i kultur (endotel till mesenkymala övergång) och förorening med icke-EG. Detta gäller särskilt för TEC som lätt konkurreras ut av samrenat fibroblaster eller tumörceller i odling. Här är en high fidelity isoleringsmetod som drar nytta av immunomagnetisk anrikning tillsammans med koloni val och in vitro expansionen beskrivs. Detta tillvägagångssätt genererar rena EG fraktioner som är helt fria från kontaminerande stromala eller tumörceller. Det är också visat att härstamning-spåras Cdh5 cre: ZsGreen l / s / l reporter möss, som används med det protokoll som beskrivs häri, är ett värdefullt verktyg för att kontrollera cellrenhet som isolerade EG kolonier från dessa möss visar hållbara och lysande ZsGreen fluorescens i kultur.

Introduction

Endotelceller (EC) är väsentliga vid utvecklingen av solida tumörer. Från initiering av den angiogena brytaren i vilande tumörer spridning och sådd av metastaser i avlägsna platser, EG bilda ledningarna som ger blod, syre och näringsämnen för att upprätthålla tumörtillväxt 1. Som nyligen föreslagit, EG har också perfusion oberoende funktioner och bildar en nisch som stödjer tillväxten av cancer stamceller och andra tumör stromaceller 2-5. Således, högrenat tumörspecifika EG (TEC) för in vitro-kultur möjliggör rutin funktionella studier som kommer att belysa nya molekylära mekanismer som förmedlar tumör angiogenes och överhörning med tumörceller.

EG högt specialiserad beroende på vävnaden ursprungs 6. På grund av den heterogena karaktären hos olika tumörtyper och tumörmikro kan TEC också visa unika egenskaper som återspeglar en tumörspecifik specialisering of vaskulaturen. Till exempel finns det påfallande variation i genuttryck signaturer i TEC isolerade från olika typer eller kvaliteter av tumörer 7,8. Däremot kan ofta co-rening av icke-EG, särskilt tumörassocierade fibroblaster och tumörceller, med TEC förväxla genomet hela uttrycket analyser. Dessa oönskade celltyper är särskilt problematiska i studier som är beroende av långsiktiga in vitro expansion av TEC kulturer.

Beskrivs här är en high-fidelity metod som konsekvent producerar rena EG kulturer från tumörer och andra vävnader. Efter immunmagnetisk anrikning i kolonnen av EG fraktioner och avlägsnande av samrenat icke-EG en ytterligare kloning-ringen steg fånga rena EG kolonier används 9. Varje koloni kan expanderas i odling för flera passager utan uppkomsten av förorenande icke-EG. Denna metod ger också flera EG-kloner från en enda isoleringsförfarandet, som är idealisk för att studera endothelial heterogenitet. Dessutom visas att Cdh5 cre: ZsGreen l / s / l reporter möss är ett värdefullt verktyg för att skapa "öde-mappade" och outplånligt märkta EG som upprätthåller ZsGreen fluorescens i kultur 10. Med smärre justeringar av protokollet, bör denna metod kunna anpassas till olika tumörtyper eller normala vävnader.

Protocol

Följande protokoll genomförs i enlighet med riktlinjer som fastställts av institutionen för laboratoriedjursmedicin vid University of North Carolina i Chapel Hill. 1. Förbered följande material och reagenser Innan du börjar Förbered EG medier genom att komplettera 400 ml låg glukos (1 g / L D-glukos eller LG) Dulbeccos modifierade Eagles medium (DMEM) med 50 ml värmeinaktiverat fetalt bovint serum, 50 ml Nu-serum IV 5 ml antibiotika-antimykotika, och hFGF, VEGF, hEGF, R3…

Representative Results

EG utgör endast mindre en bråkdel av den totala cellpopulationen i de flesta vuxna vävnader 11. Det är därför viktigt att helt smälta den skördade vävnaden i en encelliga suspension som garanterar maximal frisättning av EG extracellulärt matrix (ECM) och bindväv. Enligt vår erfarenhet ger CD31-medierad immunomagnetisk val endast anrikade men inte rena EG fraktioner; Därför är en annan avgörande steg avlägsnas fysiskt samrenat icke EG och urval / utbyggnad av EG kolonier med hjälp av kloning…

Discussion

På grund av svårigheter att få rena primär TEC kulturer, många i vitro-studier substitut TEC med kommersiellt tillgängliga EG-linjer eller primära EG såsom humant navelven EG (HUVEC) 13. Dock kan dessa EG populationer från normala vävnader bara fungera som en proxy för TEC som skiljer sig markant från deras normala motsvarigheter. Exempelvis TEC är fenotypiskt och funktionellt onormalt in vivo och en del av dessa avvikelser kan vara överförbart in vitro

Disclosures

The authors have nothing to disclose.

Acknowledgements

ACD is supported by a grant from the National Institute of Health (R01-CA177875). LX is a fellow in the HHMI-funded translational medicine program at UNC Chapel Hill. JVM is supported by a T32 pre-doctoral fellowship from the Integrative Vascular Biology Program at UNC Chapel Hill. We thank Clayton Davis for assistance with confocal microscopy.

Materials

Antibiotic-Antimycotic  Sigma-Aldrich A5955
Dulbecco's Modified Eagle's medium (1 g/L D-glucose) (LG-DMEM) Gibco 11885-084
EGM-2 Bullet Kit  Lonza CC4176 Not all components used
Fetal bovine serum (Hyclone) Thermo Scientific SH30071.03 Heat inactivated at 56°C for 30 min
Nu-Serum IV Corning CB-51004
Hank's Balanced Salt Solution (HBBS) Gibco 14175-095
Phosphate-buffered saline (PBS) Gibco 14190-144
FACS buffer  0.5 % BSA and 2 mM EDTA in PBS, filtered through a 0.22 μm filter
75% v/v ethanol for disinfection
Anti-PE microbeads  Miltenyi Biotech 130-048-801
Bovine serum albumin (BSA) fraction V, 7.5% Gibco 15260-37
Cell freezing media (Bambanker) Wako Chemicals 302-14681
Collagenase type II   Worthington Biochemical LS004176 Make stock concentration 2 mg/ml in HBSS
Deoxyribonuclease I (DNase) Worthington Biochemical LS002004 Make stock concentration 1 mg/mL in PBS
Dil-Ac-LDL Biomedical Technologies BT-902
EDTA, 0.5M, pH 8.0 Cellgro 46-034-CL
Enzymatic cell detachment solution (Accutase) Sigma-Aldrich A6964-100ML
Gelatin, 2 % in water, tissue culture grade Sigma-Aldrich G1393-100ML Dilute in PBS to make 0.5 % gelatin solution
Mouse FcR Blocking Reagent  Miltenyi Biotech 130-092-575
Neutral protease (Dispase) Worthington Biochemical LS02104 Make stock concentration 2.5 U/mL in HBSS
PE-rat anti-mouse CD31 antibody BD Pharmingen 553373
RBC lysis buffer (BD Pharm Lyse) BD Pharmingen 555899
Sterile water
Trypan blue, 0.4 %  Life Technologies 15250-061
10 mm tissue culture dishes Corning
15 mL conical tubes (sterile) Corning
50 mL conical tubes (sterile)  Corning
6-well tissue culture plates Corning
Tissue-dissociator tubes (gentleMACS) C tubes)  Miltenyi Biotech 130-093-237
Cell Separator  (MidiMACS) Miltenyi Biotech 130-042-302
Cell strainer 100 μm  Corning 352360
Cloning rings (assorted sizes) Bel-Art Products 378470000
Cryotubes Thermo Scientific
Dissecting board Sterilize or disinfect with 75% v/v ethanol before use 
Dissecting forceps and scissors Sterilize before use 
Dissecting pins 2" Sterilize before use 
FACS tubes with 35 μm filter cap Corning 352235
Filter cup (Stericup, 0.22 μm) Millipore SCGPU05RE
Fine-tip marker
Hemocytometer
LS Columns Miltenyi Biotech 130-042-401
Magnetic Multistand Miltenyi Biotech 130-042-303
Tissue adhesive (Vetbond) 3M 1469SB
Centrifuge Eppendorf 5810R Or a centrifuge with similar capacity for 15 mL and 50 mL conical tube centrifugation
Tissue culture hood
Tissue dissociator (gentleMACS) Miltenyi Biotech 130-093-235 Preset program "m_impTumor_01" used for tissue dissociation 
Liquid nitrogen freezer
Microplate or rotary shaker
Phase contrast light microscope

References

  1. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175 (3), 409-416 (1972).
  2. Butler, J. M., Kobayashi, H., Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer. 10 (2), 138-146 (2010).
  3. Franses, J. W., Baker, A. B., Chitalia, V. C., Edelman, E. R. Stromal endothelial cells directly influence cancer progression. Sci. Transl. Med. 3 (66), 66ra5 (2011).
  4. Calabrese, C., et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 11 (1), 69-82 (2007).
  5. Beck, B., et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 478 (7369), 399-403 (2011).
  6. Aird, W. C. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2 (1), a006429 (2012).
  7. Dudley, A. C. Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2 (3), a006536-a006536 (2012).
  8. Aird, W. C. Molecular heterogeneity of tumor endothelium. Cell Tissue Res. 335 (1), 271-281 (2009).
  9. Voyta, J. C., Via, D. P., Butterfield, C. E., Zetter, B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99 (6), 2034-2040 (1984).
  10. Zovein, A. C., et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell. 3 (6), 625-636 (2008).
  11. Beijnum, J. R., Rousch, M., Castermans, K., van der Linden, E., Griffioen, A. W. Isolation of endothelial cells from fresh tissues. Nat. Protoc. 3 (6), 1085-1091 (2008).
  12. Xiao, L., Harrell, J. C., Perou, C. M., Dudley, A. C. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis. 17 (3), 511-518 (2014).
  13. Beijnum, J. R., et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood. 108 (7), 2339-2348 (2006).
  14. McDonald, D. M., Choyke, P. L. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9 (6), 713-725 (2003).
  15. Baluk, P., Hashizume, H., McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genetics Dev. 15 (1), 102-111 (2005).
  16. Ghosh, K., et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl. Acad. Sci. 105 (32), 11305-11310 (2008).
  17. Amin, D. N., Hida, K., Bielenberg, D. R., Klagsbrun, M. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res. 66 (4), 2173-2180 (2006).
  18. Hida, K., et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64 (22), 8249-8255 (2004).
  19. Dudley, A. C., et al. Calcification of multipotent prostate tumor endothelium. Cancer Cell. 14 (3), 201-211 (2008).
  20. Dunleavey, J. M., et al. Vascular channels formed by subpopulations of PECAM1(+) melanoma cells. Nat. Comm. 5, 5200 (2014).
  21. St Croix, B., et al. Genes expressed in human tumor endothelium. Science. 289 (5482), 1197-1202 (2000).
  22. Bhati, R., et al. Molecular characterization of human breast tumor vascular cells. Am. J. Pathol. 172 (5), 1381-1390 (2008).
  23. Johnson, C. S., Chung, I., Trump, D. L. Epigenetic silencing of CYP24 in the tumor microenvironment. J. Steroid Biochem. Mol. Biol. 121 (1-2), 338-342 (2010).
  24. Gimbrone, M. A., Cotran, R. S., Folkman, J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60 (3), 673-684 (1974).
  25. Burridge, K. A., Friedman, M. H. Environment and vascular bed origin influence differences in endothelial transcriptional profiles of coronary and iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 299 (3), H837-H846 (2010).
  26. Zhang, J., Burridge, K. A., Friedman, M. H. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am. J. Physiol. Heart Circ. Physiol. 295 (4), H1556-H1561 (2008).
  27. Paruchuri, S., et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ. Res. 99 (8), 861-869 (2006).
  28. Wylie-Sears, J., Aikawa, E., Levine, R. A., Yang, J. -. H., Bischoff, J. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 31 (3), 598-607 (2011).
  29. Ginsberg, M., et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell. 151 (3), 559-575 (2012).
  30. Sapino, A., et al. Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast. J. Path. 194 (2), 254-261 (2001).
  31. Maddaluno, L., et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 498 (7455), 492-496 (2013).
  32. Cooley, B. C., et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med. 6 (227), 227ra34-227ra34 (2014).
  33. Garcia, J., et al. Tie1 deficiency induces endothelial-mesenchymal transition. EMBO Rep. 13 (5), 431-439 (2012).
  34. Xiao, L., et al. Tumor endothelial cells with distinct patterns of TGFβ-driven endothelial-to-mesenchymal transition. Cancer Res. 75 (7), 1244-1254 (2015).
  35. Kusumbe, A. P., Ramasamy, S. K., Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507 (7492), 323-328 (2014).
  36. Wang, L., et al. Identification of a clonally expanding haematopoietic compartment in bone marrow. EMBO J. 32 (2), 219-230 (2012).
  37. Sawamiphak, S., et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 465 (7297), 487-491 (2010).
  38. Chi, J. -. T., et al. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. 100 (19), 10623-10628 (2003).
  39. Nolan, D. J., et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell. 26 (2), 204-219 (2013).
  40. Ingram, D. A., et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 105 (7), 2783-2786 (2005).
check_url/53072?article_type=t

Play Video

Cite This Article
Xiao, L., McCann, J. V., Dudley, A. C. Isolation and Culture Expansion of Tumor-specific Endothelial Cells. J. Vis. Exp. (104), e53072, doi:10.3791/53072 (2015).

View Video