Summary

该<em>离体</em>文化与模式识别小鼠肠道组织体受体刺激

Published: May 18, 2016
doi:

Summary

这里,收获,维护和治疗与病原体相关的分子模式(PAMP),并李斯特菌小鼠小肠组织体的协议被描述,以及强调基因表达和蛋白质正确规范化技术。

Abstract

主肠组织体是具有显著影响粘膜免疫学领域的潜力的一个有价值的模型系统。然而,的类器官生长特性的复杂性进行了调查显著警告。具体而言,每个单独的器官样的生长模式是高度可变的,并创建在培养的上皮细胞的异质群体。有了这样的警告,共同组织培养做法不能简单应用到类器官系统,由于蜂窝结构的复杂性。计数和电镀对细胞数,这是单独分离的细胞,如细胞系共同仅基于,不是组织体的可靠方法,除非被施加一些正常化技术。正火总蛋白含量因驻地蛋白基质制成复合物。在细胞数量,形状和细胞类型而言,这些特征应在评估分泌CON时加以考虑从类器官质量帐篷。该协议已经产生勾勒出一个简单的程序,以文化和治疗小肠类器官与病原微生物和病原相关分子模式(PAMP)。它还强调当蛋白质分析被这样的挑战之后进行应该应用的标准化技术。

Introduction

的能力,以收集和小肠,结肠,胰腺,肝脏和脑培养初级组织体已经描述并有密切关系理解一个多种生理学代表现象为组织生物学1-5令人兴奋的进展。描述小肠类器官培养和维护的方法,首次报道了佐藤等人出来汉斯Clevers 1的实验室。在此之前的方法,收获和证明原肠上皮细胞的培养在限于并在维持上皮细胞的生长是无效的。方法包括通过用酶,例如胶原酶和分散酶,这将最终导致混合初级成纤维细胞6的生长培养组织的离解。这些条件也将时间在维持上皮细胞培养物的限制。最小的无上皮细胞小生境将形成,因为上皮细胞会进入细胞凋亡,由于缺乏适当的生长因子或接触丧失完整性,称为anokis 7。所述3D-类器官培养系统的出现提供了含有肠细胞类型的光谱中持续培养1培养原肠细胞的方法。这些上皮组织体具有以上的细胞系是它们是由多种分化的细胞的优点,并更好地模仿它们从体内 8衍生的器官。该过程最终“生长在培养皿迷你肠”已被证明是用于评估肠上皮细胞在不同刺激的反应的有价值的工具。调查主肠细胞微生物病原体相关的分子模式(PAMP)的相互作用是相关的免疫学领域,因为这些分子模式可以调节从主机和微生物9多样的响应。不仅可以调查,现在寻求与鼠标类器官这些互动,但他们可以从人类以及2中培养。该技术具有显着改变的个性化医学的潜力,很容易让人猜测的进步,这种技术将在不久的将来成为可能。

该方法的总的目标是提供一种用于培养,扩展的协议,和治疗肠组织体与各种刺激。这种刺激可以最终范围从疫苗,细菌的PAMP,活的病原体,胃肠(GI)和癌症治疗。小鼠肠道组织体的分离和培养是改编自佐藤等人虽然有从原来的方法略有偏差,最终产品是化培养按照本协议时仍然实现。此方法集中在与非同质细胞结构,其必须基于小区n导电的测定时,可以考虑到工作时,描述为合适正常化的适当技术红棕色。

Protocol

所有的研究获得批准,在弗吉尼亚理工大学IACUC的指导方针进行 1.准备R-Spondin1条件培养基从HEK293T-Rspo1细胞系 HEK293T-Rspondin1细胞的产生已如前所述10。种子的HEK293T-Rspondin1分泌细胞:5-10%汇合,约8×10 5 -1.7×10 6个细胞,在为T-175烧瓶用40ml 1×Dulbecco氏改良的Eagle培养基(DMEM)+ 10%胎牛血清( FBS)的作为生长培养基,并在37℃+ 5%CO 2孵育。 注:对于HEK…

Representative Results

按照此协议,培养肠类器官时,球体特征形类器官会收获后出现。加入R-spondin1条件培养基的每日将启动类器官的生长和出芽。组织体的生长显示于图 1A – F,且代表肠组织体上天1,2,4,5,6和第14天图1F表示在第14天组织体的非均匀生长特性。 一旦组织体生长到足够数量的,?…

Discussion

肠组织体的培养和维护是可以通过用足够的组织培养技术的任何个人掌握的过程。有在传代相比,在更传统的单层生长的细胞时微妙之处,但这些微妙之处不难克服。该方法的关键步骤涉及能够对组织体生长到足够高的密度以获得最佳播种。作为通常可以用细胞系取得了较大的接种密度是不实际的实验,必须缩小与类器官。当有多个处理组,这就变得尤为明显。

该协议的目?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Dr. Sheryl Coutermarsh-Ott, Dylan McDaniel and Bettina Heid for technical discussions. The authors thank Dr. Nanda Nanthakumar for providing the Caco-2 cells. The authors also thank The Multicultural Academic Opportunities Program (MAOP) at Virginia Tech. This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Award K01DK092355 (to I.C.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Materials

Fetal Bovine Serum (FBS) Atlanta Biologicals S11050 (Section 1,3,6) Or equivalent brand
Sorvall Legend XTR Centrifuge Thermo (Section 1,3)
DMEM GE Healthcare Sh30243.01 (Section 1,6) For Caco-2 and HEK293 Rspondin1 cells
HEK293T-Rspondin1 secreting cell line (Section 1) Described and modified from Kim, K.A. et al. Lentiviral particles contained RSPO1(NM_138683) ORF cDNA cloned into a pReceiver-Lv105 backbone custom ordered and purchased from GeneCopoeia. 
50 ml conical tube Falcon 352070 (Section 1) Or equivalent brand
T-175 Flask Corning 431079 (Section 1) Or equivalent brand 
Protein Matrix Corning 356231 (Section 2,3,4,5,6) Matrigel Growth Factor Reduced 
HyClone Dulbecco's (DPBS) GE Healthcare SH30264.01 (Section 2,3)
DMEM/F12  Life Technologies 12634-010 (Section 2,3) Advanced DMEM/F12
Corning 24 Well TC Plates Corning 3524 (Section 2)
N2 Supplement 100x  Life Technologies 17502-048 (Section 2)
B27 without vitamin A 50x  Life Technologies 12587-010  (Section 2)
Trizol Life Technologies 15596-026 (Section 2)
Glutamine Supplement (Glutamax) Life Technologies 35050-061 (Section 2) Can Combine with Advanced DMEM/ F12
HEPES (1 M) Life Technologies 15630-080 (Section 2) Can Combine with Advanced DMEM/ F12 
10ml Serological Pipet Falcon 357551 (Section 2) Or equivalent brand
Murine Noggin Peprotech 250-38 (Section 2) Stock = 100 mg/ml
N-Acetyl-L-cysteine Sigma-Aldrich A9165 (Section 2) Stock = 1M
Recombinant Mouse EGF Biolegend 585608 (Section 2) Stock = 500 mg/ml
Rocker Variable Bioexpres (Section 3)
dissecting scissors (Section 3)
forceps (Section 3)
glass slides (Section 3)
dissecting tweezers (Section 3)
25 ml Serological Pipet Falcon (Section 3)
EDTA  Sigma-Aldrich SLBB9821 (Section 3) 0.5M or alternative TC grade EDTA
Sterile Petri Dish 100mm x 15mm Fisher FB0875712 (Section 3) Or equal sized TC dish
1ml Syringe Becton Dickinson 309659 (Section 4)
Precision Glide Needle Becton Dickinson 305120 (Section 4) 23G x 1 1/4 (0.6mm x 30mm)
Flagellin from Bacillus subtilis Invivogen tlrl-bsfla  (Section 5,6)
Listeria monocytogenes ATCC 19115 (Section 5,6) (Murray et al.) 
Hemocytometer Sigma-Aldrich Z359629-1EA (Section 5,6)Or equivalent brand
BBL Brain Heart Infusion Agar Becton Dickinson 211065 (Section 5)
Bacto Brain Heart Infusion Becton Dickinson 237500 (Section 5)
Caco-2 ATCC HTB-37 (Section 6)
Trypsin  gibco 25200056 (section 6)
Methanol Fisher A412-4 (Section 6)
SpectraMax M5 Molecuar Devices (Section 6)
96 Well Assay Plate Corning 3603 (Section 6) Black Plate, Clear Bottom TC treated
Nuclear Staining Dye Life Technologies H1399 (section 6) Hoechst 33342
T-75 Flask Corning 430641 (Section 6) Or equivalent brand
15 ml conical tube Falcon 352096 (Section1,3) Or equivalent brand
1.7 ml polypropylene tube Bioexpress C-3262-1 Or equivalent brand
Quick-RNA MiniPrep Zymo Research R1054 Or equivalent brand
TNF-alpha  Applied Biosystems Mm 00443260_g1 Taqman gene expression assay kit
IL-6  Applied Biosystems (Mm 00446190_m1 Taqman gene expression assay kit
IL-1beta Applied Biosystems Mm 00434228_m1 Taqman gene expression assay kit
IL-18 Applied Biosystems Mm 00434225_m1 Taqman gene expression assay kit
18s Applied Biosystems Hs 99999901_s1 Taqman gene expression assay kit
7500 Fast Real Time PCR System Applied Biosystems
Nexus gradient Mastercycler Eppendorf
TaqMan Fast Universal PCR Master Mix Life Technologies 4352042
High Capacity cDNA Reverse Transcription Kit Life Technologies/Applied Biosystems 4368814
Fast Optical 96-Well Reaction Plate, 0.1 mL Life Technologies/Applied Biosystems 4346907
Recombinant Mouse R-Spondin 1 Protein R&D Systems 3474-RS-050 500 ng/ml
chloroform Sigma-Aldrich C7559

References

  1. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  2. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  3. Boj, S. F., et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 160 (1-2), 324-338 (2015).
  4. Huch, M., et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 160 (1-2), 299-312 (2015).
  5. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7467), 373-379 (2013).
  6. Freshney, R. I., Freshney, M. G. . Culture of epithelial cells. 2nd edn. , (2002).
  7. Vachon, P. H., et al. Differentiation state-selective roles of p38 isoforms in human intestinal epithelial cell anoikis. Gastroenterology. 123 (6), 1980-1991 (2002).
  8. Hynds, R. E., Giangreco, A. Concise review: the relevance of human stem cell-derived organoid models for epithelial translational medicine. Stem Cells. 31 (3), 417-422 (2013).
  9. Kaiko, G. E., Stappenbeck, T. S. Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol. 35 (11), 538-548 (2014).
  10. Kim, K. A., et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science. 309 (5738), 1256-1259 (2005).
  11. Chomczynski, P., Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 1 (2), 581-585 (2006).
  12. Allen, I. C., et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity. 34 (6), 854-865 (2011).
  13. Zhang, Y. G., Wu, S., Xia, Y., Sun, J. Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep. 2 (9), (2014).
  14. Grabinger, T., et al. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 5, 1228 (2014).
  15. Slater, T. F., Sawyer, B., Straeuli, U. Studies on Succinate-Tetrazolium Reductase Systems. Iii. Points of Coupling of Four Different Tetrazolium Salts. Biochim Biophys Acta. 77, 383-393 (1963).
  16. Parry, M. F., Neu, H. C. Effect of N-acetylcysteine on antibiotic activity and bacterial growth in vitro. J Clin Microbiol. 5 (1), 58-61 (1977).
check_url/54033?article_type=t

Play Video

Cite This Article
Rothschild, D. E., Srinivasan, T., Aponte-Santiago, L. A., Shen, X., Allen, I. C. The Ex Vivo Culture and Pattern Recognition Receptor Stimulation of Mouse Intestinal Organoids. J. Vis. Exp. (111), e54033, doi:10.3791/54033 (2016).

View Video