Summary

一种利用共振能量转移(FRET)的生物传感器-force议定书衡量所有核LINC复杂的机械力

Published: April 11, 2017
doi:

Summary

A number of FRET-based force biosensors have recently been developed, enabling the protein-specific resolution of intracellular force. In this protocol, we demonstrate how one of these sensors, designed for the linker of the nucleoskeleton-cytoskeleton (LINC) complex protein Nesprin-2G can be used to measure actomyosin forces on the nuclear LINC complex.

Abstract

The LINC complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton to the nucleus. Nesprin-2G is a key component of the LINC complex that connects the actin cytoskeleton to membrane proteins (SUN domain proteins) in the perinuclear space. These membrane proteins connect to lamins inside the nucleus. Recently, a Förster Resonance Energy Transfer (FRET)-force probe was cloned into mini-Nesprin-2G (Nesprin-TS (tension sensor)) and used to measure tension across Nesprin-2G in live NIH3T3 fibroblasts. This paper describes the process of using Nesprin-TS to measure LINC complex forces in NIH3T3 fibroblasts. To extract FRET information from Nesprin-TS, an outline of how to spectrally unmix raw spectral images into acceptor and donor fluorescent channels is also presented. Using open-source software (ImageJ), images are pre-processed and transformed into ratiometric images. Finally, FRET data of Nesprin-TS is presented, along with strategies for how to compare data across different experimental groups.

Introduction

力敏感,遗传编码的FRET传感器最近出现的用于在活细胞中测量基于拉伸力,提供深入了解的机械力跨蛋白1,2,3,4施加的重要工具。有了这些工具,研究人员能够以非侵入性图像内的力量在使用传统的荧光显微镜的活细胞。这些传感器由通过弹性肽3分离的FRET对(供体和受体荧光蛋白,最频繁蓝色供体和黄色受体)的。在对比C-或N-末端标记,该传感器被插入到测量跨蛋白质传递的机械力的蛋白质的内部位点,表现为一个分子应变计。增加跨越传感器的结果的机械张力在FRET-P之间的距离增加空气,导致降低FRET 3。其结果是,该FRET是负相关的拉伸力。

这些基于荧光的传感器已被用于粘着斑蛋白(纽蛋白3和踝蛋白4),细胞骨架蛋白(α辅肌动蛋白5),和细胞-细胞连接蛋白显影(E-钙粘蛋白6,7,VE-钙粘蛋白8,和PECAM 8)。在这些生物传感器中最常用的和充分表征的弹性连接体被称为TSmod和由40个氨基酸,(GPGGA)8,其从所述蜘蛛丝蛋白衍生鞭的重复序列组成。 TSmod已经显示出表现为线性弹性纳米弹簧,与FRET响应要求1至拉伸力3 5对-N。鞭状的不同长度可以被用于改变所述动态řTSmod FRET力灵敏度9的安格。除了鞭状,血影蛋白重复5和绒毛头戴受话器肽(称为HP35)4已被用作在类似力的生物传感器4 FRET对之间的弹性的肽。最后,最近的一份报告显示,TSmod也可用于检测压缩力10。

我们最近开发了用于细胞核-细胞骨架(LINC)复合蛋白Nesprin2G的接头的力传感器,通过使用TSmod插入称为迷你Nesprin2G( 图2C),其行为类似于内源性一个先前开发的截短的蛋白Nesprin2G Nesprin-2G 11。在LINC复杂包含了从外面导致细胞核内,连接细胞质细胞骨架的核纤层的多种蛋白质。 Nesprin-2G是结构蛋白结合到两个肌动蛋白骨架在细胞质和核周空间SUN蛋白质。使用我们的生物传感器,我们能够证明Nesprin-2G是受制于NIH3T3成纤维细胞肌动球蛋白2依赖紧张。这是第一次力在核LINC复杂的跨蛋白直接测量,它很可能成为了解力在力学生物学的核心作用的重要工具。

下面的协议提供的如何使用Nesprin-2G力传感器,包括在哺乳动物细胞中Nesprin张力传感器(Nesprin-TS)的表达Nesprin-细胞的FRET图像的表达,以及采集和分析了详细的方法TS。使用配备有光谱检测器的倒共焦显微镜,如何测量敏化发射的描述使用FRET光谱分离,并设置比例FRET成像。输出比率的图像可以被用来制造相对QUAntitative力比较。虽然该协议的重点是Nesprin-TS的成纤维细胞中的表达,这是很容易适应其它哺乳动物细胞,包括细胞系和原代细胞。此外,该协议,因为它涉及到图像采集和分析FRET可以容易地适用于已经被用于其它蛋白开发了其他基于FRET的力生物传感器。

Protocol

1.获取Nesprin-2G传感器DNA和其它质粒DNA 从商业来源获得Nesprin-2G TS(张力传感器),Nesprin-2G HL(无头)控制,mTFP1,金星和TSmod。传播的所有DNA的质粒,并使用标准的大肠杆菌菌株,如DH5-α,净化他们如先前12,13说明。 2.转染细胞与Nesprin-2G和其它质粒DNA 生长NIH 3T3成纤维细胞的细胞至70-90%铺满在6孔细胞培养…

Representative Results

按照上述协议,质粒DNA从DNA库中获取并转化入大肠杆菌细胞中。表达该传感器DNA 的大肠杆菌从LB /氨苄青霉素平板上选择并在液体LB肉汤扩增。以下载体的扩增,DNA质粒使用标准,市售的DNA提取试剂盒纯化为TRIS-EDTA缓冲液中。使用分光光度计,纯化的DNA被量化为微克/毫升( 图1A,1-2天)的标准浓度。 ?…

Discussion

一种方法和跨Nesprin-2G,在核LINC复合体的蛋白质的机械张力的活细胞成像演示,在上面概述的。在此之前的工作,各种技术,如微吸管,磁珠术和显微激光烧蚀,已经被用于对细胞核申请应变,并测量它的体积的材料特性16,17,18。 然而,直到我们最近的工作,还没有研究已经直接表明拉力在活细胞中2</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

由托马斯·F.和凯特·米勒·杰弗里斯MEMORIA信托(以DEC)和美国国立卫生研究院授予R35GM119617(以DEC)这项工作是支持的。共焦显微镜成像在所述纳米材料VCU表征核心(NCC)设施执行。

Materials

Nesprin-TS DNA Addgene 68127 Retrieve from https://www.addgene.org/68127/
Nesprin-HL DNA Addgene 68128 Retrieve from https://www.addgene.org/68128/
mTFP1 DNA Addgene 54613 Retrieve from https://www.addgene.org/54613/
mVenus DNA Addgene 27793 Retrieve from https://www.addgene.org/27793/
TSmod DNA Addgene 26021 Retrieve from https://www.addgene.org/26021/
Competent Cells Bioline BIO-85026
Liquid LB Media ThermoFisher 10855001 https://www.thermofisher.com/order/catalog/product/10855001
Solid LB Bacterial Culture Plates Sigma-Aldrich L5667 http://www.sigmaaldrich.com/catalog/product/sigma/l5667?lang=en&region=US
Ampicillin Sigma A9518
Spectrophotometer Biorad 273 BR 07335 SmartSpec Plus
quartz cuvette Biorad 1702504 Cuvette for SmartSpec Plus
 DNA isolation kit Macherey-Nagel 740412.5 NucleoBond Xtra Midi Plus
6-well cell culture dish Falcon-Corning 353046 Multiwell 6-well Polystrene Culture Dish
Dulbecco's Modified Eagle Medium, (DMEM) cell media Gibco 11995-065 DMEM(1x)
 Bovine Serum Life Technologies 16170-078
reduced serum cell media Gibco 31985-070 Reduced Serum Medium, "optimem"
Lipid Carrier Solution invitrogen 11668-019 Lipid Reagent, "Lipofectamine 2000"
1.5mL sterile plastic tube Denville c2170
Trypsin Gibco 25200-056 0.25% Trypsin-EDTA (1x)
glass-bottom microscope viewing dish In Vitro Scientific D35-20-1.5-N 35mm Dish with 20mm Bottom Well #1.5 glass
Fibronectin ThermoFisher 33016015 fibronectin human protein,plasma
Phosphate Buffered Saline (PBS) Gibco 14190-144 Dulbecco's Phosphate Buffered Saline
15mL sterile centrifuge tube Greiner bio-one 188261
swinging rotor centrifuge  Thermo electron Centra CL2 Swinging rotor thermo electron 236
cell culture biosafety hood Forma Scientific 1284
 climate controlled cell culture incubator ThermoFisher 3596
inverted LED widefield fluorescent microscope Life technologies EVOS FL
Clear HEPES buffered imaging media Molecular Probes A14291DJ
Fetal bovine Serum Life technologies 10437-028
Temperature Controlled-Inverted confocal w/458 and 515nm laser sources  Zeiss  LSM 710-w/spectral META detector
Outgrowth Media Newengland Biolabs B9020s
NIH 3T3 Fibroblasts ATCC CRL-1658

References

  1. Conway, D. E., Schwartz, M. A. Flow-dependent cellular mechanotransduction in atherosclerosis. J Cell Sci. 126, 5101-5109 (2013).
  2. Arsenovic, P. T., Ramachandran, I., et al. Nesprin-2G, a Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension. Biophys J. 110 (1), 34-43 (2016).
  3. Grashoff, C., Hoffman, B. D., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 466 (7303), 263-266 (2010).
  4. Austen, K., Ringer, P., et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat Cell Bio. 17 (12), 1597-1606 (2015).
  5. Meng, F., Sachs, F. Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J Cell Sci. 124, 261-269 (2011).
  6. Borghi, N., Sorokina, M., et al. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. U.S.A. 109 (31), 12568-12573 (2012).
  7. Cai, D., Chen, S. -. C., et al. Mechanical Feedback through E-Cadherin Promotes Direction Sensing during Collective Cell Migration. Cell. 157 (5), 1146-1159 (2014).
  8. Conway, D. E., Breckenridge, M. T., Hinde, E., Gratton, E., Chen, C. S., Schwartz, M. A. Fluid Shear Stress on Endothelial Cells Modulates Mechanical Tension across VE-Cadherin and PECAM-1. Curr Bio CB. 23 (11), 1024-1030 (2013).
  9. Brenner, M. D., Zhou, R., et al. Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing. Nano Lett. 16 (3), 2096-2102 (2016).
  10. Rothenberg, K. E., Neibart, S. S., LaCroix, A. S., Hoffman, B. D. Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin. Cell Mol Bioeng. 8 (3), 364-382 (2015).
  11. Ostlund, C., Folker, E. S., Choi, J. C., Gomes, E. R., Gundersen, G. G., Worman, H. J. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J Cell Sci. 122, 4099-4108 (2009).
  12. Froger, A., Hall, J. E. Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp. (6), e253 (2007).
  13. Zhang, S., Cahalan, M. D. Purifying plasmid DNA from bacterial colonies using the QIAGEN Miniprep Kit. J Vis Exp. (6), e247 (2007).
  14. Rodighiero, S., Bazzini, C., et al. Fixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching. Cell. Physiol. Biochem. 21 (5-6), 489-498 (2008).
  15. Kardash, E., Bandemer, J., Raz, E. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nat Protoc. 6 (12), 1835-1846 (2011).
  16. Vaziri, A., Mofrad, M. R. K. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech. 40 (9), 2053-2062 (2007).
  17. Wang, N., Naruse, K., et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. U.S.A. 98 (14), 7765-7770 (2001).
  18. Nagayama, K., Yahiro, Y., Matsumoto, T. Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS letters. 585 (24), 3992-3997 (2011).
  19. Luxton, G. W. G., Gomes, E. R., Folker, E. S., Vintinner, E., Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science. 329 (5994), 956-959 (2010).
  20. Chen, Y., Mauldin, J. P., Day, R. N., Periasamy, A. Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J Microsc. 228, 139-152 (2007).
  21. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8 (11), 2281-2308 (2013).
  22. LaCroix, A. S., Rothenberg, K. E., Berginski, M. E., Urs, A. N., Hoffman, B. D. Construction, imaging, and analysis of FRET-based tension sensors in living cells. Methods Cell Biol. , (2015).

Play Video

Cite This Article
Arsenovic, P. T., Bathula, K., Conway, D. E. A Protocol for Using Förster Resonance Energy Transfer (FRET)-force Biosensors to Measure Mechanical Forces across the Nuclear LINC Complex. J. Vis. Exp. (122), e54902, doi:10.3791/54902 (2017).

View Video