Summary

磷31磁共振波谱分析:一种测量工具<em>在体内</em>线粒体氧化磷酸化能力人骨骼肌

Published: January 19, 2017
doi:

Summary

This work demonstrates the feasibility of an in vivo phosphorus-31 magnetic resonance spectroscopy (31PMRS) technique to quantify mitochondrial oxidative phosphorylation (OXPHOS) capacity in human skeletal muscle.

Abstract

Skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity, which is critically important in health and disease, can be measured in vivo and noninvasively in humans via phosphorus-31 magnetic resonance spectroscopy (31PMRS). However, the approach has not been widely adopted in translational and clinical research, with variations in methodology and limited guidance from the literature. Increased optimization, standardization, and dissemination of methods for in vivo 31PMRS would facilitate the development of targeted therapies to improve OXPHOS capacity and could ultimately favorably impact cardiovascular health. 31PMRS produces a noninvasive, in vivo measure of OXPHOS capacity in human skeletal muscle, as opposed to alternative measures obtained from explanted and potentially altered mitochondria via muscle biopsy. It relies upon only modest additional instrumentation beyond what is already in place on magnetic resonance scanners available for clinical and translational research at most institutions. In this work, we outline a method to measure in vivo skeletal muscle OXPHOS. The technique is demonstrated using a 1.5 Tesla whole-body MR scanner equipped with the suitable hardware and software for 31PMRS, and we explain a simple and robust protocol for in-magnet resistive exercise to rapidly fatigue the quadriceps muscle. Reproducibility and feasibility are demonstrated in volunteers as well as subjects over a wide range of functional capacities.

Introduction

这项工作的目的是概述可再现的方法来在体内骨骼肌线粒体功能非侵入性测量具有大范围的能力的个体。异常线粒体损伤是多种代谢综合征和遗传性疾病的一个标志,从常见的情况,如老龄化和糖尿病罕见疾病,如弗里德共济失调。

代谢综合征和线粒体功能障碍

代谢综合征已经显示出干扰线粒体功能,抑制骨骼肌OXPHOS,并导致异位脂肪储存在骨骼肌1,2。调节代谢和能量稳态的关键的细胞器,线粒体有牵连的肥胖3,4的病理生理学,胰岛素抵抗5 </sup>,2型糖尿病(T2DM)6,7,与糖尿病有关的微8,9,10,11和大血管并发症12,13,以及非酒精性脂肪肝病(NAFLD)14,15,16,除其他.Insulin性的特点是骨骼肌线粒体活性深刻的变化,其中包括减少线粒体三羧酸(TCA)通量率,ATP合成率和柠檬酸合成酶和NADH:O 2氧化还原酶活性5。一种假设是,这些改变可能是由于游离脂肪酸(FFA)的代谢物在肌肉的积累,这是肥胖等肥胖-R中显着增强兴高采烈的疾病2,17。肌肉的高架游离脂肪酸和脂质中间体曝光可降低基因在脂质氧化途径的表达,以及TCA循环和电子传输链(ETC)18。这种减少在脂质过载的设置线粒体骨骼肌OXPHOS容量是通过在定量(线粒体含量和生物合成)的下降伴随着19和骨骼肌线粒体20的定性作用。曝光骨骼肌和肌细胞对游离脂肪酸导致严重的胰岛素抗性,并增加了在肌肉FFA摄取用在人类和啮齿类动物21胰岛素抗性相关。脂质中间体酰胺和二酰基甘油(DAG)已经显示出,通过改变激酶,例如蛋白激酶C和PROT的活性直接抑制胰岛素信号传导途径EIN激酶B 21。因此,脂质衍生分子似乎发挥骨骼肌胰岛素抵抗和2型糖尿病的发展显着的作用。然而,在线粒体容量的变化是否是一个原因或胰岛素抵抗22的结果目前还不清楚。

弗里德里希共济失调和线粒体功能障碍

下降OXPHOS也可以从基因缺陷引起的。弗里德里希共济失调(FA),遗传性共济失调的最常见的形式,是一种遗传性疾病引起的frataxin的突变(FXN)基因,产生帧内线粒体的铁蓄积,活性氧的产生,和氧化磷酸23的异常 24,25,26。这一重大发现已导致靶向治疗的发展,whicħ目的是提高在亚细胞水平的线粒体功能。尽管有这样的认识,出现了体内发育受限,为FA临床研究可重复的生物标志物。事实上,在FA靶向治疗的有效评价的关键障碍是不能跟踪线粒体功能的变化。当前功能的措施,例如,可以识别心输出量减少;然而,它们不能确定在哪些功能障碍发生水平( 图1)的。线粒体功能的可靠标记物可用于鉴定和评估弗里德里希共济失调疾病进展的发展是至关重要的,以评估靶向疗法的相关机械冲击。

受损的氧化磷酸化和心功能不全

异常线粒体功能,无论是后天或遗传性,有助于CARDI的发展或进展AC功能障碍。下压力超负荷和心脏衰竭的条件下,从FFA初级能量底物优先开关为葡萄糖。这是通过ETC活性降低和氧化磷酸化27相关联。在心脏功能障碍的线粒体生物能量学的病理生理学可根据线粒体缺陷的主要起源不同。糖尿病和心肌线粒体异常,如受损的生物合成和脂肪酸代谢,从而导致降低的衬底灵活性,能效,并且最终,舒张功能障碍28,29代谢综合征的结果。在FA,另一方面,一个frataxin缺乏导致心肌30,31显著线粒体的铁蓄积。铁积累通过芬顿反应32 <导致产生的自由基/ SUP>和增加的自由基诱导的心肌损伤的机会。内线粒体的铁蓄积也与氧化应激的增加的灵敏度和减小的氧化能力30,31相关联。铁的积累和随后的异常线粒体功能,由于frataxin缺乏,因此可负责在FA 33,34观察到受损心脏能量和心肌病。这也是有趣的是,在骨骼肌线粒体减少氧化能力的平行运动耐受力,减少心脏衰竭(HF)35代谢能力。骨骼肌OXPHOS容量测量,如本文详述,很容易实现的和健壮;再加HF骨骼肌氧化磷酸化的意义,这些特性使其成为一个有吸引力的生物标志物在听到的全面研究ŧ疾病36。

受损的氧化磷酸化和伴随的心脏功能障碍并不是代谢和线粒体疾病的无关紧要的方面。与糖尿病和代谢性疾病科是在患心血管疾病的风险较高,并有心肌梗死(MI)37,38,39,40,41后的超额死亡;在FA科目有一半心肌病和心律失常或心脏衰竭42多人死亡。因此,降低的OXPHOS量化不仅可以允许早期检测和治疗的心脏功能障碍,但它也可以减轻这些疾病的主要临床负担。

靶向疗法直接增加OXPHOS容量是提高的受试者治疗中的有希望的领域,磨片疗法的代谢功能障碍的原因是遗传性或获得。目前,新的发展靶向药物,无论是缓解异常线粒体功能43或纠正的主要遗传缺陷44可以提高FA的疯狂生物能的特点。在所获取的线粒体功能障碍的情况下,增加体力活动可改善线粒体功能45,46,47。

31磷磁共振波谱作为线粒体功能的无创生物标志物

不管测试的治疗,综合骨骼肌生物能的体内评估是评估有针对性的干预措施的影响的一个重要工具,尤其是在严重的运动耐受或无法接受常规科目太保LIC测试。调谐到磷(31 PMRS),整个身体细胞内的各种高能量底物中发现的内源性核的磁共振光谱,已被用于使用各种方法,包括量化线粒体氧化容量在磁铁运动恢复协议和肌肉刺激方案48。在运动恢复协议依赖于各种设备的范围从调节和衡量工作量,皮带和垫允许突发型电阻和准静态运动的简单配置,MRI兼容的测力计的复杂性。之一的任何这些协议的主要目标是产生的量为三磷酸腺苷(ATP)的需求是通过磷酸的酶分解(PCR)通过肌酸激酶反应49最初遇到的能量不平衡。一旦运动停止,ATP生成率是由氧化河粉为主sphorylation并代表线粒体50体内容量最大。此外,运动后恢复期间OXPHOS可以通过一阶速率反应51进行说明。肌酸的锻炼后的恢复可以因此通过一个指数时间常数(τPCR),与表示对氧化ATP合成更大的能力τ 肌酸的较小的值的嵌合来定量。显著已作出努力,以验证对体外 31 PMRS和氧化磷酸化的更直接的措施,并演示了这种技术52,53,54,55的潜在的临床应用。

值得注意的是,在这项工作中所描述的协议可在临床上可用的扫描仪来实现,并且它已被广泛地验证为无创生物标记ö˚F线粒体功能56。然而,对于应用程序优化,个体神经肌肉功能障碍或行动不便的严重程度不同的锻炼31 PMRS协议尚未很好地建立57。定义良好的,广泛适用的运动方案和31 PMRS技术是在与线粒体功能异常的基础疾病的评价特别有用。

几个先前的研究已经探索的非侵入性技术应用在受试者量化线粒体功能。例如,这些技术已显示在2型糖尿病36对受损OXPHOS。洛等。首先测试的PMRS技术的可行性与FA受试者,发现1)在FA的基本遗传缺陷损害的骨骼肌OXPHOS和2)GAA三联体的数目重复成反比骨骼肌öXPHOS 33。最近,Nachbauer 等。二手PMRS作为在FA药物试验有7例次要转归指标。肌酸恢复时间在受试者显著不再与对照组相比,重申洛的早期工作,并指示可导致线粒体容量下降可检测使用PMRS技术58异常frataxin表达的FA的影响。

可靠的方法,以充分体内骨骼肌功能限定在一个可行的,经济有效的,并且可重复的方式是改善受试者的结果的范围内,影响线粒体功能的疾病的关键。

这项工作概述了使用 31 PMRS骨骼肌体内最大的氧化能力获得一个强大的过程。内的磁铁练习协议已被个人涉及广泛的物理和泛函容忍升的能力,并让使用廉价且广泛可用的设备简化学科设置。

Protocol

该协议由认可并遵循美国俄亥俄州立大学伦理委员会对人体科研的准则。这是非常重要的,涉及MR设备全部过程由训练有素的人员秉承MR安全59的最高标准执行。 1.材料和准备确保所有必要的材料的实验之前可用( 图2)。 塞31 P线圈插入在表线圈连接在最靠近孔中的考试表的末尾。将一个大三角形泡沫垫的MR检查表头?…

Representative Results

重复性研究 6名志愿者(4男2女,平均年龄24.5±6.2岁),没有自报的心脏,代谢或线粒体疾病进行1星期内2不同的日子里所描述的31 PMRS锻炼和成像技术的会议,以评估技术再现性( 图6a)。对正常的志愿者进行的研究证实了线粒体功能的定量31 PMRS研究的再现性。进行PCR恢复时间奥特曼…

Discussion

本文描述为能提供串行和无创体内骨骼肌线粒体功能的测量31 PMRS检测的标准协议。考虑到调查针对代谢综合征的日益沉重的负担及其导致的发病率和死亡率的广度时,协议持有相当大的吸引力。这31 PMRS协议要求的扫描仪最短时间内,可以在用市售的MRS设施的中心并入综合代谢的研究科目。

该议定书中的关键步骤

<stro…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by a Davis Heart and Lung Research Institute Trifit Award, as well as by the Intramural Research Program of the NIH National Institute on Aging.

Materials

1.5 T MR Scanner Siemens manufacturer will not affect results
10 cm 31P transmit-receive coil, 1.5T compatible PulseTeq manufacturer will not affect results
3 fl oz Baby Oil Johnson & Johnson manufacturer will not affect results
Foam triangle cushion (Knee) Siemens manufacturer will not affect results
(3) plastic buckle resistive straps; table to table Siemens manufacturer will not affect results
(1) plastic buckle resistive strap; self-connecting Siemens

References

  1. Eckel, R. H., Alberti, K. G., Grundy, S. M., Zimmet, P. Z. The metabolic syndrome. Lancet. 375 (9710), 181-183 (2010).
  2. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 371 (12), 1131-1141 (2014).
  3. Holmstrom, M. H., Iglesias-Gutierrez, E., Zierath, J. R., Garcia-Roves, P. M. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am J Physiol Endocrinol Metab. 302 (6), 731-739 (2012).
  4. Jheng, H. F., et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol. 32 (2), 309-319 (2012).
  5. Petersen, K. F., et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 300 (5622), 1140-1142 (2003).
  6. Kelley, D. E., He, J., Menshikova, E. V., Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 51 (10), 2944-2950 (2002).
  7. Liu, R., et al. Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS One. 9 (3), 92810 (2014).
  8. Ha, H., Hwang, I. A., Park, J. H., Lee, H. B. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract. 82, 42-45 (2008).
  9. Akude, E., et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes. 60 (1), 288-297 (2011).
  10. Fernyhough, P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep. 15 (11), 89 (2015).
  11. Chen, M., Wang, W., Ma, J., Ye, P., Wang, K. High glucose induces mitochondrial dysfunction and apoptosis in human retinal pigment epithelium cells via promoting SOCS1 and Fas/FasL signaling. Cytokine. 78, 94-102 (2016).
  12. Blake, R., Trounce, I. A. Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta. 1840 (4), 1404-1412 (2014).
  13. Rains, J. L., Jain, S. K. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 50 (5), 567-575 (2011).
  14. Serviddio, G., et al. Mitochondrial involvement in non-alcoholic steatohepatitis. Mol Aspects Med. 29 (1-2), 22-35 (2008).
  15. Perez-Carreras, M., et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology. 38 (4), 999-1007 (2003).
  16. Garcia-Ruiz, I., et al. Mitochondrial complex I subunits are decreased in murine nonalcoholic fatty liver disease: implication of peroxynitrite. J Proteome Res. 9 (5), 2450-2459 (2010).
  17. Patti, M. E., Corvera, S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 31 (3), 364-395 (2010).
  18. Muoio, D. M., Newgard, C. B. Obesity-related derangements in metabolic regulation. Annu Rev Biochem. 75, 367-401 (2006).
  19. Bonnard, C., et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 118 (2), 789-800 (2008).
  20. Jheng, H. F., Huang, S. H., Kuo, H. M., Hughes, M. W., Tsai, Y. S. Molecular insight and pharmacological approaches targeting mitochondrial dynamics in skeletal muscle during obesity. Ann N Y Acad Sci. 1350, 82-94 (2015).
  21. Coen, P. M., Goodpaster, B. H. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab. 23 (8), 391-398 (2012).
  22. Montgomery, M. K., Turner, N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 4 (1), 1-15 (2015).
  23. Martelli, A., Puccio, H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front Pharmacol. 5, 130 (2014).
  24. Campuzano, V., et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet. 6 (11), 1771-1780 (1997).
  25. Calabrese, V., et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 233 (1-2), 145-162 (2005).
  26. Ristow, M., et al. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc Natl Acad Sci U S A. 97 (22), 12239-12243 (2000).
  27. Ardehali, H., et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail. 14 (2), 120-129 (2012).
  28. Ren, J., Pulakat, L., Whaley-Connell, A., Sowers, J. R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl). 88 (10), 993-1001 (2010).
  29. Marin-Garcia, J., Goldenthal, M. J. Understanding the impact of mitochondrial defects in cardiovascular disease: a review. J Card Fail. 8 (5), 347-361 (2002).
  30. Babcock, M., et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science. 276 (5319), 1709-1712 (1997).
  31. Foury, F., Cazzalini, O. Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett. 411 (2-3), 373-377 (1997).
  32. Wardman, P., Candeias, L. P. Fenton chemistry: an introduction. Radiat Res. 145 (5), 523-531 (1996).
  33. Lodi, R., et al. Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo 31P magnetic resonance spectroscopy study. Cardiovasc Res. 52 (1), 111-119 (2001).
  34. Raman, S. V., et al. Impaired myocardial perfusion reserve and fibrosis in Friedreich ataxia: a mitochondrial cardiomyopathy with metabolic syndrome. Eur Heart J. 32 (5), 561-567 (2011).
  35. Kitzman, D. W., et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 306 (9), 1364-1370 (2014).
  36. Scheuermann-Freestone, M., et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 107 (24), 3040-3046 (2003).
  37. Allcock, D. M., Sowers, J. R. Best strategies for hypertension management in type 2 diabetes and obesity. Curr Diab Rep. 10 (2), 139-144 (2010).
  38. Katzmarzyk, P. T., Church, T. S., Janssen, I., Ross, R., Blair, S. N. Metabolic syndrome, obesity, and mortality: impact of cardiorespiratory fitness. Diabetes Care. 28 (2), 391-397 (2005).
  39. Wang, J., et al. The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. Eur Heart J. 28 (7), 857-864 (2007).
  40. Zambon, S., et al. Metabolic syndrome and all-cause and cardiovascular mortality in an Italian elderly population: the Progetto Veneto Anziani (Pro.V.A) Study. Diabetes Care. 32 (1), 153-159 (2009).
  41. Malik, S., et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 110 (10), 1245-1250 (2004).
  42. Ropper, A. H., Samuels, M. A. . Adams and Victor’s Principles of Neurology. 9 edn. , (2009).
  43. Abeti, R., et al. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich’s ataxia. Pharmacol Res. 99, 344-350 (2015).
  44. Li, Y., et al. Excision of Expanded GAA Repeats Alleviates the Molecular Phenotype of Friedreich’s Ataxia. Mol Ther. 23 (6), 1055-1065 (2015).
  45. Toledo, F. G., Goodpaster, B. H. The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging. Mol Cell Endocrinol. 379 (1-2), 30-34 (2013).
  46. Oldridge, N. B., Guyatt, G. H., Fischer, M. E., Rimm, A. A. Cardiac rehabilitation after myocardial infarction. Combined experience of randomized clinical trials. JAMA. 260 (7), 945-950 (1988).
  47. O’Connor, G. T., et al. An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation. 80 (2), 234-244 (1989).
  48. Ryan, T. E., Brizendine, J. T., McCully, K. K. A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy. J Appl Physiol (1985). 114 (2), 230-237 (2013).
  49. Wallimann, T. Bioenergetics. Dissecting the role of creatine kinase. Curr Biol. 4 (1), 42-46 (1994).
  50. Forbes, S. C., Paganini, A. T., Slade, J. M., Towse, T. F., Meyer, R. A. Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol Regul Integr Comp Physiol. 296 (1), 161-170 (2009).
  51. Korzeniewski, B., Rossiter, H. B. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans. J Physiol. 593 (24), 5255-5268 (2015).
  52. Meyer, R. A. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol. 254 (4), 548-553 (1988).
  53. McCully, K. K., Fielding, R. A., Evans, W. J., Leigh, J. S., Posner, J. D. Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol (1985). 75 (2), 813-819 (1993).
  54. Layec, G., Haseler, L. J., Richardson, R. S. Reduced muscle oxidative capacity is independent of O2 availability in elderly people. Age (Dordr). 35 (4), 1183-1192 (2013).
  55. Larson-Meyer, D. E., Newcomer, B. R., Hunter, G. R., Hetherington, H. P., Weinsier, R. L. 31P MRS measurement of mitochondrial function in skeletal muscle: reliability, force-level sensitivity and relation to whole body maximal oxygen uptake. NMR Biomed. 13 (1), 14-27 (2000).
  56. Kemp, G. J., Ahmad, R. E., Nicolay, K., Prompers, J. J. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf). 213 (1), 107-144 (2015).
  57. Lynch, D. R., et al. Near infrared muscle spectroscopy in patients with Friedreich’s ataxia. Muscle Nerve. 25 (5), 664-673 (2002).
  58. Nachbauer, W., et al. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS One. 8 (7), 69229 (2013).
  59. Kanal, E., et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 37 (3), 501-530 (2013).
  60. Petroff, O. A., Ogino, T., Alger, J. R. High-resolution proton magnetic resonance spectroscopy of rabbit brain: regional metabolite levels and postmortem changes. J Neurochem. 51 (1), 163-171 (1988).
  61. Jubrias, S. A., Crowther, G. J., Shankland, E. G., Gronka, R. K., Conley, K. E. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol. 553 (2), 589-599 (2003).
  62. Layec, G., et al. Reproducibility assessment of metabolic variables characterizing muscle energetics in vivo: A 31P-MRS study. Magn Reson Med. 62 (4), 840-854 (2009).
  63. Iotti, S., Lodi, R., Frassineti, C., Zaniol, P., Barbiroli, B. In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. NMR Biomed. 6 (4), 248-253 (1993).
  64. Wren, T. A., Bluml, S., Tseng-Ong, L., Gilsanz, V. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. AJR Am J Roentgenol. 190 (1), 8-12 (2008).
  65. Milani, R. V., Lavie, C. J., Mehra, M. R., Ventura, H. O. Understanding the basics of cardiopulmonary exercise testing. Mayo Clin Proc. 81 (12), 1603-1611 (2006).
  66. Wust, R. C., van der Laarse, W. J., Rossiter, H. B. On-off asymmetries in oxygen consumption kinetics of single Xenopus laevis skeletal muscle fibres suggest higher-order control. J Physiol. 591 (3), 731-744 (2013).
  67. Ryan, T. E., Brophy, P., Lin, C. T., Hickner, R. C., Neufer, P. D. Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: a comparison with in situ measurements. J Physiol. 592 (15), 3231-3241 (2014).
  68. Hamaoka, T., McCully, K. K., Niwayama, M., Chance, B. The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments. Philos Trans A Math Phys Eng Sci. 369, 4591-4604 (2011).
check_url/54977?article_type=t

Play Video

Cite This Article
Kumar, V., Chang, H., Reiter, D. A., Bradley, D. P., Belury, M., McCormack, S. E., Raman, S. V. Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle. J. Vis. Exp. (119), e54977, doi:10.3791/54977 (2017).

View Video