Summary

缺氧条件下培养细胞内源性核蛋白的共免疫沉淀测定

Published: August 02, 2018
doi:

Summary

在这里, 我们描述了一个共同免疫沉淀协议, 研究在缺氧条件下内源核蛋白的蛋白质相互作用。该方法适用于低氧转录因子与转录联合调节剂相互作用的证明。

Abstract

低氧水平 (缺氧) 触发多种适应反应与缺氧诱导因子 1 (HIF-1) 复合体作为主调节器。HIF-1 由 heterodimeric 氧调节α亚基 (HIF-1α) 和组成性表达的β亚基 (HIF-1β) 也称为芳烃受体核转运体 (ARNT), 调节包括血管生成在内的不同过程中所涉及的基因、红细胞和糖酵解。HIF-1 相互作用蛋白的鉴定是了解缺氧信号通路的关键。除了调节 HIF-1α稳定性外, 缺氧还触发了许多转录因子的核易位, 包括 HIF-1α和 ARNT。值得注意的是, 目前用于研究这种蛋白质-蛋白质相互作用 (PPIs) 的方法大多是基于那些通过蛋白质过度表达人为地增加蛋白质水平的系统。蛋白质过度表达往往导致非生理结果的时间和空间文物。在这里, 我们描述了在低氧治疗后使用内源核蛋白的改进的免疫沉淀协议, 并作为概念的证明, 以显示 HIF-1α和 ARNT 之间的相互作用。在本议定书中, 缺氧细胞是在缺氧条件下收获的, Dulbecco 的磷酸盐缓冲盐水 (DPBS) 洗涤缓冲液也在使用前平衡缺氧条件, 以减轻蛋白质降解或蛋白质复合体复氧过程中的离解。此外, 核分数随后提取, 以集中和稳定内源性核蛋白, 并避免可能的假结果往往看到在蛋白质过度表达。该协议可用于证明转录因子与转录联合调节器在缺氧条件下的内源和本机相互作用。

Introduction

缺氧发生时, 没有足够的氧气供应给细胞和组织的身体。它在各种生理和病理过程中起着关键作用, 如干细胞分化、炎症和癌症12。缺氧诱导因子 (HIFs) 功能, heterodimers 由氧调节α亚基和组成性表达β亚基也称为 ARNT3。迄今已确定了 HIF α亚基 (HIF-1α、HIF-2α和 HIF-3α) 和三个 HIF β亚基 (ARNT/HIF-1β、ARNT2 和 ARNT3) 的三种异构体。HIF-1α和 ARNT 是无所不在表达的, 而 HIF-2α、HIF-3α、ARNT2 和 ARNT3 有更限制性的表达模式4。HIF-1 蛋白复合物是缺氧反应的关键调节因子。在缺氧条件下, HIF-1α变稳定, translocates 至细胞核, dimerizes ARNT5。随后, 这一复杂的结合到特定的核苷酸称为缺氧反应元素 (HREs), 并调节所涉及的目标基因的表达, 包括血管生成, 红细胞和糖酵解6。除了这种 “规范” 的反应, 缺氧信号通路也被称为串扰多细胞反应信号通路, 如缺口和核因子-卡伯 B (NF-nf-κb)7,8,9

新的 HIF-1 相互作用蛋白的鉴定对于更好地理解缺氧信号通路是很重要的。与 ARNT, 这是不敏感的氧气水平和组成性表达, HIF-1α蛋白质水平是严格调节细胞氧水平。在 normoxia (21% 氧), HIF-1α蛋白质迅速退化10,11。HIF-1α在 normoxia 的短半衰期为细胞提取物中蛋白质的检测以及 HIF-1α-interacting 蛋白的鉴定提供了具体的技术挑战。此外, 一些转录因子, 包括那些 HIF-1 复合体植物常常将进入细胞核的缺氧条件下12,13,14。目前用于 PPI 研究的大多数方法都是使用非生理的蛋白质过度表达来进行的。这种蛋白过度表达通过多种机制 (包括资源超载、化学计量失衡、混杂相互作用和通路调制1516) 引起了不同的细胞缺陷。在 PPI 研究方面, 蛋白质过度表达可能导致假阳性, 甚至是假阴性, 结果取决于蛋白质的性质和功能的抗原蛋白。因此, 目前的 PPI 研究方法必须修改, 以揭示在缺氧条件下的生理相关 PPIs。我们以前已经证明了 HIF-1 和 Ets 家族转录因子遗传结合蛋白 (GABP) 在缺氧 P19 细胞中的相互作用, 这有助于Hes1启动子对缺氧17的反应。在这里, 我们描述了一个共同免疫沉淀协议, 研究 PPIs 之间的内源性核蛋白在缺氧条件下。HIF-1α与 ARNT 的相互作用表现为概念的证明。该协议适用于证明转录因子与转录联合调节器在缺氧条件下的相互作用, 包括但不限于 HIF-1 相互作用蛋白的鉴定。

Protocol

本协议部分采用人类胚胎肾脏 293A (HEK293A) 细胞, 遵循新加坡南洋理工大学人类研究伦理学委员会的指导方针。 1. HEK293A 细胞缺氧的诱导 准备四10厘米的菜肴和种子 3–5 x 106 HEK293A 细胞每盘在10毫升 Dulbecco 的改良鹰的培养基 (DMEM, 4.5 克/升葡萄糖) 辅以10% 胎牛血清 (血清), 2 毫米 l-谷氨酰胺, 110 毫克/升丙酮钠, 100 U/毫升青霉素和100毫克/链霉素。培养细胞在37°c, 5% CO…

Representative Results

为了评估细胞对缺氧的反应, 研究了缺氧治疗后 HIF-1 复合物的表达水平和亚单位定位。HEK293A 细胞在缺氧条件下培养4小时或保持在 normoxia 作为控制。HIF-1α和 ARNT 蛋白水平检查在整个细胞或核/细胞质提取物的西方印迹。按照预期, 缺氧上调总 HIF-1α水平, 而 ARNT 总细胞裂解物水平没有显著改变 (图 1A)。此外, 缺氧导致 HEK293A 细胞中 HIF-1α和 ARNT 的核积累…

Discussion

HIF-1 复合体是细胞氧稳态的主调节器, 它调节了多种细胞适应缺氧反应的基因。新的 HIF-1 相互作用蛋白的鉴定对于了解缺氧信号转导具有重要意义。免疫沉淀实验通常用于 PPIs 研究, 描绘细胞信号转导通路。然而, 蛋白质过度表达仍然被广泛使用, 这可能导致实验性工件。此外, HIF-1α是一种高度不稳定的蛋白质, 它在重氧11期间迅速降解。此外, 缺氧会触发大多数哺乳动物细胞系中 …

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢张庆信教授对缺氧工作站的使用。这项工作得到以下方面的支持: 新加坡教育部、教育部 1T1-02/04 和 MOE2015-T2-2-087 (Y.A.)、李港医学院、南洋理工大学开办补助金 M4230003 (P.O.B.)、瑞典研究理事会、家庭苓基金会, 诺德基金会, Stichting af Jochnick 基金会, 瑞典糖尿病协会, 氧化钪保险公司, 糖尿病研究和健康基金会, 泊位冯 Kantzow 的基础,战略研究计划在糖尿病卡罗林斯卡 Institutet, 紧急救济 ERC-2013-AdG 338936 Betalmage, 和克努特和爱丽丝拉乌尔·沃伦贝格基金会。

Materials

Material
1.0 M Tris-HCl Buffer, pH 7.4  1st BASE 1415
Protein A/G Sepharose beads Abcam ab193262
Natural Mouse IgG protein Abcam ab198772
EDTA Bio-Rad 1610729
2x Laemmli Sample Buffer Bio-Rad 1610737
2-Mercaptoethanol Bio-Rad 1610710
Nitrocellulose Membrane    Bio-Rad 1620112
Blotting-Grade Blocker Bio-Rad 1706404 Non-fat dry milk for western blotting applications
10x Tris Buffered Saline (TBS) Bio-Rad 1706435
10% Tween 20 Bio-Rad 1610781
10x Tris/Glycine/SDS Bio-Rad 1610732
10x Tris/Glycine Buffer  Bio-Rad 1610771
Precision Plus Protein Dual Color Standards Bio-Rad 1610374
Anti-rabbit IgG, HRP-linked Antibody Cell Signaling 7074
Anti-mouse IgG, HRP-linked Antibody  Cell Signaling 7076
SignalFire ECL Reagent Cell Signaling 6883
Dulbecco's Phosphate-Buffered Saline Corning 21-030-CV
Phenylmethylsulfonyl fluoride (PMSF) Merck Millipore 52332
ARNT/HIF-1 beta Antibody  Novus Biologicals NB100-124  Concentration: 1.4 mg/mL
HIF-1 alpha Antibody Novus Biologicals NB100-479 Concentration: 1.0 mg/mL
YY1 Antibody Novus Biologicals NBP1-46218 Concentration: 0.2 mg/mL
Qproteome Nuclear Protein Kit Qiagen 37582 Lysis buffer NL and Extraction Buffer NX1 are provied in the kit
GAPDH Antibody Santa Cruz sc-47724 Concentration: 0.2 mg/mL
Glycerol (≥99%) Sigma G5516
Potassium chloride Sigma P9541
RIPA buffer Sigma R0278
Sodium Chloride (NaCl) Sigma 71376
NP-40 Sigma 127087-87-0
Dulbecco’s modified Eagle’s medium (DMEM, 4.5 g/L glucose) Thermo Fisher Scientific 11995065
Dithiothreitol (DTT) Thermo Fisher Scientific R0861
Fetal Bovine Serum Thermo Fisher Scientific 10270106
HEK293A cell line Thermo Fisher Scientific R70507
Methanol  Thermo Fisher Scientific 67-56-1
Penicillin-Streptomycin Thermo Fisher Scientific 15140122
Pierce Protease Inhibitor Tablets  Thermo Fisher Scientific 88660
Pierce BCA Protein Assay Kit Thermo Fisher Scientific 23225
QSP gel loading tip  Thermo Fisher Scientific QSP#010-R204-Q-PK 1-200 uL
Equipment/Instrument
Thick Blot Filter Paper, Precut, 7.5 x 10 cm Bio-Rad 1703932
Mini-PROTEAN Tetra Vertical Electrophoresis Cell for Mini Precast Gels, with Mini Trans-Blot Module and PowerPac Basic Power Supply Bio-Rad 1658034
4–15% Mini-PROTEAN TGX Precast Protein Gels Bio-Rad 4561083
ChemiDoc XRS+ System Bio-Rad 1708265
I-Glove BioSpherix I-Glove
Synergy HTX Multi-Mode Microplate Reader  BioTek BTS1LFTA
Costar 5mL Stripette Serological Pipets Corning 4487
Costar 10mL Stripette Serological Pipets Corning 4488
Costar 25mL Stripette Serological Pipets Corning 4251
Corning 96-Well Clear Bottom Black Polystyrene Microplates Corning 3631
15mL High Clarity PP conical Centrifuge Tubes Corning 352095
Small Cell Scraper Corning 3010
Gilson Pipetman L 4-pipettes kit  Gilson F167370 P2, P20, P200, P1000 and accessories
1.5mL Polypropylene Microcentrifuge Tubes Greiner Bio-One  616201
PIPETBOY acu 2 Pipettor INTEGRA Biosciences 155 000 
Justrite Flammable Liquid Storage Cabinets Justrite Manufacturing Co. 896000
Vortex mixer Labnet S0200
CO2 incubator NuAire NU-5820
Orbital shakers Stuart SSL1
Tube rotator SB3 Stuart SB3
MicroCL 21R Microcentrifuge Thermo Fisher Scientific 75002470
Sorvall ST 16 Centrifuge Thermo Fisher Scientific 75004240
Tissue Culture Dishes (100 mm) Thermo Fisher Scientific 150350
Slide-A-Lyzer MINI Dialysis Device Thermo Fisher Scientific 69580 10K MWCO, 0.1 mL
Float Buoys for 0.1mL Slide-A-Lyzer MINI Dialysis Devices Thermo Fisher Scientific 69588
LSE Digital Dry Bath Heaters Thermo Fisher Scientific 1168H25
Thermo Scientific 1300 Series A2 Class II, Type A2 Bio Safety Cabinets Thermo Fisher Scientific 13-261-308
Software
Image Lab Software Bio-Rad 1709691

References

  1. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell. 148 (3), 399-408 (2012).
  2. Bartels, K., Grenz, A., Eltzschig, H. K. Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci U S A. 110 (46), 18351-18352 (2013).
  3. Jiang, B. H., Rue, E., Wang, G. L., Roe, R., Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 271 (30), 17771-17778 (1996).
  4. Semenza, G. L. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 88 (4), 1474-1480 (2000).
  5. Kallio, P. J., et al. Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J. 17 (22), 6573-6586 (1998).
  6. Ke, Q., Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70 (5), 1469-1480 (2006).
  7. Gustafsson, M. V., et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 9 (5), 617-628 (2005).
  8. Zheng, X., et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci U S A. 105 (9), 3368-3373 (2008).
  9. D’Ignazio, L., Bandarra, D., Rocha, S. NF-kappaB and HIF crosstalk in immune responses. FEBS J. 283 (3), 413-424 (2016).
  10. Wang, G. L., Jiang, B. H., Rue, E. A., Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 92 (12), 5510-5514 (1995).
  11. Zheng, X., et al. Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: Role of subcellular compartmentalization. Mol Cell Biol. 26 (12), 4628-4641 (2006).
  12. Depping, R., et al. Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochim Biophys Acta. 1783 (3), 394-404 (2008).
  13. Wei, H., et al. Hypoxia induces oncogene yes-associated protein 1 nuclear translocation to promote pancreatic ductal adenocarcinoma invasion via epithelial-mesenchymal transition. Tumour Biol. 39 (5), (2017).
  14. Chang, H. Y., et al. Hypoxia promotes nuclear translocation and transcriptional function in the oncogenic tyrosine kinase RON. Cancer Res. 74 (16), 4549-4562 (2014).
  15. Moriya, H. Quantitative nature of overexpression experiments. Mol Biol Cell. 26 (22), 3932-3939 (2015).
  16. Prelich, G. Gene overexpression: Uses, mechanisms, and interpretation. Genetics. 190 (3), 841-854 (2012).
  17. Zheng, X., et al. A Notch-independent mechanism contributes to the induction of Hes1 gene expression in response to hypoxia in P19 cells. Exp Cell Res. 358 (2), 129-139 (2017).
  18. Farris, M. H., Ford, K. A., Doyle, R. C. Qualitative and quantitative assays for detection and characterization of protein antimicrobials. J Vis Exp. (110), e53819 (2016).
  19. Chilov, D., et al. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1alpha. J Cell Sci. 112 (Pt 8), 1203-1212 (1999).
  20. Yin, S., et al. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1alpha interaction with cofactors p300/CBP. Clin Cancer Res. 18 (24), 6623-6633 (2012).
  21. Holmquist-Mengelbier, L., et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell. 10 (5), 413-423 (2006).
  22. Koh, M. Y., Powis, G. Passing the baton: The HIF switch. Trends Biochem Sci. 37 (9), 364-372 (2012).
  23. Dumetz, A. C., Snellinger-O’brien, A. M., Kaler, E. W., Lenhoff, A. M. Patterns of protein protein interactions in salt solutions and implications for protein crystallization. Protein Sci. 16 (9), 1867-1877 (2007).
  24. Graven, K. K., Troxler, R. F., Kornfeld, H., Panchenko, M. V., Farber, H. W. Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J Biol Chem. 269 (39), 24446-24453 (1994).
  25. Caradec, J., et al. Desperate house genes’: The dramatic example of hypoxia. Br J Cancer. 102 (6), 1037-1043 (2010).
check_url/57836?article_type=t

Play Video

Cite This Article
Zheng, X., Ho, C. Q. W., Zheng, X., Lee, K. L., Gradin, K., Pereira, T. S., Berggren, P., Ali, Y. Co-immunoprecipitation Assay Using Endogenous Nuclear Proteins from Cells Cultured Under Hypoxic Conditions. J. Vis. Exp. (138), e57836, doi:10.3791/57836 (2018).

View Video