Summary

Control Neural intraoperatorio de cirugía de la tiroides en un modelo porcino

Published: February 11, 2019
doi:

Summary

Este estudio tiene como objetivo desarrollar un protocolo estándar de vigilancia neuronal intraoperatorio de cirugía de la tiroides en un modelo porcino. Aquí, presentamos un protocolo para demostrar la anestesia general, para comparar diferentes tipos de electrodos y para investigar las características electrofisiológicas de los nervios laríngeos recurrentes normales y heridos.

Abstract

Lesión intraoperatoria al nervio laríngeo recurrente (Galerla) puede causar parálisis de cuerda vocal, que interfiere con el habla y puede potencialmente interferir con la respiración. En los últimos años, ha sido ampliamente adaptada como una técnica de complemento para localizar la Galerla, detectar lesiones Galerla y predecir la función de la cuerda vocal durante las operaciones de supervisión intraoperativa neural (IONM). Muchos estudios también han utilizado modelos animales para investigar nuevas aplicaciones de la tecnología IONM y desarrollar estrategias fiables para prevenir lesión intraoperatoria de Galerla. El objetivo de este artículo es presentar un protocolo estándar para el uso de un modelo porcino en investigación IONM. El artículo muestra los procedimientos para la inducción de anestesia general, realizando la intubación traqueal y el diseño experimental para investigar las características electrofisiológicas de las lesiones de la Galerla. Aplicaciones de este protocolo pueden mejorar la eficacia general en aplicación del principio 3R (reducción, reemplazo y refinamiento) en estudios IONM porcinos.

Introduction

Aunque ahora, la tiroidectomía es un procedimiento comúnmente realizado en todo el mundo, la disfunción postoperatoria de la voz es todavía común. Lesión intraoperatoria al nervio laríngeo recurrente (Galerla) puede causar parálisis de cuerda vocal, que interfiere con el habla y puede potencialmente interferir con la respiración. Además, lesión a la rama externa del nervio laríngeo superior puede causar un cambio de voz importantes afectando tono y proyección vocal.

Neuronales la supervisión intraoperativa (IONM) durante las operaciones de tiroides ha obtenido gran popularidad como una técnica adjunta para mapeo y confirmando la Galerla, nervio del nervio vago (VN) y la rama externa del nervio laríngeo superior (EBSLN). Porque IONM es útil para confirmar y aclarar los mecanismos de lesión Galerla y para la detección de variaciones anatómicas en la Galerla, puede utilizarse para predecir la función de la cuerda vocal después de la tiroidectomía. Por lo tanto, IONM agrega una nueva dinámica funcional en la cirugía de tiroides y capacita a cirujanos con información que no puede obtenerse por visualización directa solo1,2,3,4,5 , 6 , 7 , 8 , 9 , 10.

Recientemente, muchos estudios prospectivos han usado modelos porcinos para optimizar el uso de la tecnología IONM y establecer estrategias fiables para prevenir intraoperatoria Galerla lesión11,12,13,14 ,15,16,17,18,19,20. Modelos de porcinos también se han utilizado para proporcionar a los profesionales esencial educación y capacitación en aplicaciones clínicas de IONM.

Por lo tanto, la combinación de modelos animales y IONM tecnología es una herramienta valiosa para el estudio de la fisiopatología de la lesión de Galerla21. El objetivo de este artículo era demostrar el uso de un modelo porcino en investigación IONM. Específicamente, el artículo muestra cómo inducir anestesia general, realizar intubación traqueal y establecer experimentos para investigar las características electrofisiológicas de los diferentes tipos de lesiones de Galerla.

Protocol

Los experimentos con animales fueron aprobados por el institucional cuidado Animal y el Comité uso (IACUC) de la Universidad médica de Kaohsiung, Taiwán (Protocolo no: 102046 de IACUC, 104063, 105158). 1. animal preparación y anestesia Modelo animal porcinoNota: Este estudio aplicó el protocolo descrito en la literatura para establecer un modelo porcino prospectivo de IONM11,12,13<s…

Representative Results

Estudio electrofisiológicoDatos de referencia EMG, el nivel de estímulo mínimo/máximo y las curvas de respuesta del estímuloUtilizando una estimulación monopolar estándar sonda, el nivel de estimulación mínima obtenida para VN y Galerla estimulación los rangos de 0,1 a 0,3 mA, respectivamente. En general, el estímulo actual correlacionó positivamente con la resultante EMG amplituderesponse11,17. La amp…

Discussion

Lesión a la Galerla y EBSLN sigue siendo una fuente significativa de morbilidad causada por la cirugía de tiroides. Hasta hace poco, lesión del nervio puede identificarse sólo por visualización directa del trauma. El uso de IONM permite ahora más identificación funcional de la Galerla aplicando la estimulación y la contracción de los músculos objetivo de grabación. En la actualidad, sin embargo, ambos sistemas IONM convencionales intermitentes y continuadas tienen algunas limitaciones técnicas en interpretaci…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este estudio fue apoyado por subvenciones de Kaohsiung Medical University Hospital, Universidad médica de Kaohsiung (KMUH106-6R49) y del Ministerio de ciencia y tecnología (la mayoría 106-2314-B-037-042-MY2.), Taiwán

Materials

Criticare systems nGenuity 8100E physiologic monitoring, including capnography, electrocardiography (ECG) and monitoring of oxygenation (SaO2)
Intraoperative NIM nerve monitoring systems Medtronic NIM-Response 3.0 monitor EMG activity from multiple muscles. If there is a change in nerve function, the NIM system may provide audible and visual warnings to help reduce the risk of nerve damage.
NIM TriVantage EMG Tube Medtronic 8229706 6 mm ID, 8.2 mm OD. The NIM TriVantage EMG Tube is a standard size, non-reinforced, DEHP-free PVC tube that features smooth, conductive silver ink electrodes and a cross-band to guide placement. It has reduced sensitivity to rotation and movement while offering increased EMG responses that facilitate improved nerve dissection.
NIM Contact Reinforced EMG Endotracheal Tube Medtronic 8229506 6 mm ID, 9 mm OD. The NIM Contact EMG Tube continuously monitors electromyography (EMG)
activity during surgery. An innovative design allows the tube to maintain contact,
even upon rotation. Vocal cords are more easily visible against the white band.
Recording electrode leads are twisted pair. Packaged sterile with one green and
one white subdermal needle. Single use.
NIM Standard Reinforced EMG Endotracheal Tube Medtronic 8229306 6 mm ID, 8.8 mm OD. The NIM Standard EMG Tube continuously monitors electromyography (EMG)
activity during surgery. Recording electrode leads are twisted pair. Packaged
sterile with one green and one white subdermal needle. Single use.
NIM Flex EMG Endotracheal Tube Medtronic 8229960 6 mm. The NIM Flex EMG Tube monitors vocal cord and recurrent laryngeal nerve EMG
activity during surgery. An updated, dual-channel design allows the tube to
maintain contact with the vocal cords, even upon rotation. Recording electrode
leads are twisted pair. Packaged sterile with one green and one white subdermal
needle. Single use.
Standard Prass Flush-Tip Monopolar Stimulator Probe Medtronic 8225101 Tips and Handles. For locating and mapping cranial nerves in the surgical field, the single-use
Standard Prass Monopolar Stimulating Probe features a flush 0.5 mm tip
diameter. The probe is insulated to the tip to prevent current shunting. Individually
sterile packaged.
Ball-Tip Monopolar Stimulator Probe Medtronic 8225275/ 8225276 Tip and Handle, 1.0 mm/ 2.3mm. Featuring a flexible ball tip and flexible shaft, the single-use Ball-Tip Monopolar
Stimulating Probe allows greater access to neural structures. The 1.0 mm tip
diameter allows atraumatic contact to larger neural structures. The probe is insulated
to the tip to prevent current shunting. Individually sterile packaged.
Yingling Flex Tip Monopolar Stimulator Probe Medtronic 8225251 Tips and Handles. The highly flexible single-use Yingling Monopolar Stimulating Probe allows
stimulation in areas outside the surgeon’s field of view. The platinum-iridium wire
of the probe is fully insulated to the ball tip to prevent current shunting. Individually
sterile packaged with one green subdermal electrode.
Prass Bipolar Stimulator Probe Medtronic 8225451 The single-use Prass Bipolar Stimulating Probe features a slim, flexible tip that
allows greater access to neural structures. The probe tip is 0.5 mm in distance
between cathode and anode for minimal shunting. Individually sterile packaged.
Concentric Bipolar Stimulator Probe Medtronic 8225351 The single-use Concentric Bipolar Stimulating Probe features a 360°
contact area. Insulation is complete to the active tip; cables and handles are
polarized. Individually sterile packaged.
Side-by-Side Bipolar Stimulator Probe Medtronic 8225401 The single-use Side-by-Side Bipolar Stimulating Probe features probe tips that
are 1.3 mm apart, allowing neural structures to be stimulated between the tips.
Insulation is complete to the active tip; cables and handles are polarized.
Individually sterile packaged.
APS (Automatic Periodic Stimulation) Electrode* Medtronic 8228052 / 8228053 2 mm/ 3mm. The APS Electrode offers continuous, real-time monitoring. The electrode is placed
on the nerve and can provide early warning of a change in nerve function.
Neotrode ECG Electrodes ConMed 1741C-003 The electrode is made of a clear tape material, which allows for continuous observation of the patient's skin during monitoring.
LigaSure Small Jaw Medtronic LF1212 A FDA-approved
electrothermal bipolar vessel sealing system for surgery

References

  1. Randolph, G. W., et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope. 121, S1-S16 (2011).
  2. Barczynski, M., et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement. Laryngoscope. 123, S1-S14 (2013).
  3. Chiang, F. Y., et al. The mechanism of recurrent laryngeal nerve injury during thyroid surgery–the application of intraoperative neuromonitoring. Surgery. 143 (6), 743-749 (2008).
  4. Chiang, F. Y., et al. Standardization of Intraoperative Neuromonitoring of Recurrent Laryngeal Nerve in Thyroid Operation. World Journal of Surgery. 34 (2), 223-229 (2010).
  5. Chiang, F. Y., et al. Anatomical variations of recurrent laryngeal nerve during thyroid surgery: how to identify and handle the variations with intraoperative neuromonitoring. The Kaohsiung Journal of Medical Sciences. 26 (11), 575-583 (2010).
  6. Chiang, F. Y., et al. Intraoperative neuromonitoring for early localization and identification of the recurrent laryngeal nerve during thyroid surgery. The Kaohsiung Journal of Medical Sciences. 26 (12), 633-639 (2010).
  7. Chiang, F. Y., et al. Detecting and identifying nonrecurrent laryngeal nerve with the application of intraoperative neuromonitoring during thyroid and parathyroid operation. American Journal of Otolaryngology. 33 (1), 1-5 (2012).
  8. Wu, C. W., et al. Vagal nerve stimulation without dissecting the carotid sheath during intraoperative neuromonitoring of the recurrent laryngeal nerve in thyroid surgery. Head Neck. 35 (10), 1443-1447 (2013).
  9. Wu, C. W., et al. Loss of signal in recurrent nerve neuromonitoring: causes and management. Gland Surgery. 4 (1), 19-26 (2015).
  10. Wu, C. W., et al. Recurrent laryngeal nerve injury with incomplete loss of electromyography signal during monitored thyroidectomy-evaluation and outcome. Langenbeck’s Archives of Surgery. 402 (4), 691-699 (2017).
  11. Wu, C. W., et al. Investigation of optimal intensity and safety of electrical nerve stimulation during intraoperative neuromonitoring of the recurrent laryngeal nerve: a prospective porcine model. Head Neck. 32 (10), 1295-1301 (2010).
  12. Lu, I. C., et al. A comparison between succinylcholine and rocuronium on the recovery profile of the laryngeal muscles during intraoperative neuromonitoring of the recurrent laryngeal nerve: A prospective porcine model. The Kaohsiung Journal of Medical Sciences. 29 (9), 484-487 (2013).
  13. Wu, C. W., et al. Intraoperative neuromonitoring for the early detection and prevention of RLN traction injury in thyroid surgery: A porcine model. Surgery. 155 (2), 329-339 (2014).
  14. Lin, Y. C., et al. Electrophysiologic monitoring correlates of recurrent laryngeal nerve heat thermal injury in a porcine model. Laryngoscope. 125 (8), E283-E290 (2015).
  15. Wu, C. W., et al. Recurrent laryngeal nerve safety parameters of the Harmonic Focus during thyroid surgery: Porcine model using continuous monitoring. Laryngoscope. 125 (12), 2838-2845 (2015).
  16. Dionigi, G., et al. Severity of Recurrent Laryngeal Nerve Injuries in Thyroid Surgery. World Journal of Surgery. 40 (6), 1373-1381 (2016).
  17. Wu, C. W., et al. Optimal stimulation during monitored thyroid surgery: EMG response characteristics in a porcine model. Laryngoscope. 127 (4), 998-1005 (2017).
  18. Dionigi, G., et al. Safety of LigaSure in recurrent laryngeal nerve dissection-porcine model using continuous monitoring. Laryngoscope. 127 (7), 1724-1729 (2017).
  19. Lu, I. C., et al. Safety of high-current stimulation for intermittent intraoperative neural monitoring in thyroid surgery: A porcine model. Laryngoscope. , (2018).
  20. Lu, I. C., et al. Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. 126 (4), 1014-1019 (2016).
  21. Wu, C. -. W., et al. Intraoperative neural monitoring in thyroid surgery: lessons learned from animal studies. Gland Surgeryery. 5 (5), 473-480 (2016).
  22. Lu, I. C., et al. Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. , (2016).
  23. Scott, A. R., Chong, P. S., Brigger, M. T., Randolph, G. W., Hartnick, C. J. Serial electromyography of the thyroarytenoid muscles using the NIM-response system in a canine model of vocal fold paralysis. Annals of Otology, Rhinology, and Laryngology. 118 (1), 56-66 (2009).
  24. Puram, S. V., et al. Vocal cord paralysis predicted by neural monitoring electrophysiologic changes with recurrent laryngeal nerve compressive neuropraxic injury in a canine model. Head Neck. 38, E1341-E1350 (2016).
  25. Puram, S. V., et al. Posterior cricoarytenoid muscle electrophysiologic changes are predictive of vocal cord paralysis with recurrent laryngeal nerve compressive injury in a canine model. Laryngoscope. 126 (12), 2744-2751 (2016).
  26. Brauckhoff, K., et al. Injury mechanisms and electromyographic changes after injury of the recurrent laryngeal nerve: Experiments in a porcine model. Head Neck. 40 (2), 274-282 (2018).
  27. Brauckhoff, K., Aas, T., Biermann, M., Husby, P. EMG changes during continuous intraoperative neuromonitoring with sustained recurrent laryngeal nerve traction in a porcine model. Langenbeck’s Archives of Surgery. 402 (4), 675-681 (2017).
  28. Schneider, R., et al. A new vagal anchor electrode for real-time monitoring of the recurrent laryngeal nerve. The American Journal of Surgery. 199 (4), 507-514 (2010).
  29. Kim, H. Y., et al. Impact of positional changes in neural monitoring endotracheal tube on amplitude and latency of electromyographic response in monitored thyroid surgery: Results from the Porcine Experiment. Head Neck. 38, E1004-E1008 (2016).
  30. Sterpetti, A. V., De Toma, G., De Cesare, A. Recurrent laryngeal nerve: its history. World Journal of Surgery. 38 (12), 3138-3141 (2014).
  31. Kaplan, E. L., Salti, G. I., Roncella, M., Fulton, N., Kadowaki, M. History of the recurrent laryngeal nerve: from Galen to Lahey. World Journal of Surgery. 33 (3), 386-393 (2009).
  32. Lu, I. C., et al. In response to Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve. Laryngoscope. 127 (1), e51-e52 (2017).
check_url/57919?article_type=t

Play Video

Cite This Article
Wu, C., Huang, T., Chen, H., Chen, H., Tsai, T., Chang, P., Lin, Y., Tseng, H., Hun, P., Liu, X., Sun, H., Randolph, G. W., Dionigi, G., Chiang, F., Lu, I. Intra-Operative Neural Monitoring of Thyroid Surgery in a Porcine Model. J. Vis. Exp. (144), e57919, doi:10.3791/57919 (2019).

View Video