Summary

超超磁氧化铁纳米探针在肺外结核检测的合成、表征及应用

Published: February 16, 2020
doi:

Summary

为了改进结核分枝杆菌抗原的血清学诊断测试,我们开发了超副磁性氧化铁纳米探针来检测肺外结核病。

Abstract

合成了一种分子成像探针,包括超副磁性氧化铁(SPIO)纳米颗粒和结核分枝杆菌表面抗体(MtbsAb),以提高肺外结核(ETB)的成像灵敏度。合成了SPIO纳米探针,并与MtbsAb结合。纯化SPIO-MtbsAb纳米探针采用TEM和NMR进行特征。为了确定探针的靶向能力,SPIO-MtbsAb纳米探针与Mtb一起孵育,用于体外成像测定,并注射到Mtb接种小鼠体内进行磁共振(MR)的体内调查。Mtb和THP1细胞磁共振成像(MRI)的对比度增强降低与SPIO-MtbsAb纳米探针浓度成正比。在30分钟静脉注射SPIO-MtbsAb纳米探针注射Mtb感染小鼠后,与接受PBS注射的小鼠相比,在T2加权MR图像中,肉芽肿位位的信号强度提高了14倍。MtbsAb 纳米探针可用作 ETB 检测的新方式。

Introduction

在全球范围内,肺外结核病(ETB)占结核病病例的很大比例。然而,ETB诊断往往错过或延迟,因为它的阴险的临床表现和诊断测试的不良表现;错误的结果包括痰涂片对酸快杆菌的阴性,缺乏组织病理学上的肉芽肿组织,或未能培养结核分枝杆菌(Mtb)。与典型病例相比,ETB发生频率较低,并且很少涉及 Mtb 杆菌的释放。此外,它通常被本地化在难以接近的部位,如淋巴结,胸膜,和骨关节区域1。因此,侵入性程序,以获得足够的临床标本,这使得细菌确认的风险和困难,是必不可少的2,3,4。

市售的ETB抗体检测测试在临床检测中不可靠,因为它们的灵敏度范围广泛(0.00-1.00)和所有肺外位点结合的特异性(0.59-1.00)。5 。干扰素β、培养性滤蛋白(CFP)和早期分泌抗原靶点(ESAT)的酶相关免疫点(ELISPOT)检测已用于诊断潜伏和活性结核病。然而,结果因诊断ETB6、7、8的不同疾病部位而异。此外,皮肤PPD(纯化蛋白衍生物)和昆蒂弗龙-结核病经常提供假阴性结果9。QuantiFERON-TB-2G是一种全血免疫反应测定,不需要从受影响的器官标本,这可能是一个替代诊断工具6,10,11。其他通常用于结核病脑膜炎的诊断方法,如聚合酶链反应,仍然过于麻木不仁,无法自信地排除临床诊断12,13。这些常规测试表明,没有足够的诊断信息来发现肺外感染部位。因此,临床上需要新的诊断模式。

分子成像旨在设计新的工具,可以直接筛选体内疾病过程的特定分子靶点14,15。超副磁性氧化铁(SPIO),一种T2加权NMR造影剂,可以显著提高磁共振(MR)成像(MRI)16、17的特异性和灵敏度。这种新的功能成像模式可以通过配体受体相互作用在分子水平上精确绘制组织变化草图。在这项研究中,合成了一种新的分子成像探针,包括SPIO纳米粒子,与Mtb表面抗体(MtbsAb)结合,用于ETB诊断。SPIO纳米探针是微创对组织和身体在检查18,19。此外,这些纳米探针由于其顺磁特性,可以在低浓度下显示精确的MR图像。此外,SPIO纳米探针似乎引起最少的过敏反应,因为铁离子的存在是正常生理的一部分。在这里,在细胞和动物模型中评估了针对ETB的SPIO-MtbsAb纳米探针的灵敏度和特异性。结果表明,纳米探针可作为超敏感成像剂用于ETB诊断。

Protocol

所有有关动物实验的协议均遵循美国国家卫生研究院《实验室动物护理和使用指南》(2011 年第 8 版)的标准实验室动物育种操作程序,并经机构动物护理和使用委员会。 1. SPIO纳米粒子合成 在室温下大力搅拌 Dextran T-40 (5 mL; 50% w/w) 和水性 FeCl3±6H2O (0.45 g; 2.77 mmol) 和 FeCl2×4H2O (0.32 g; 2.52 mmol) 溶液的混合物,制备涂有氧化铁的磁?…

Representative Results

SPIO-MtbsAb 纳米探针合成和表征SPIO纳米粒子被设计成与MtbsAb结合。稳定在SPIO纳米粒子表面的dextran被上氯二苯并联。SPIO纳米粒子随后与EDBE结合,以激活dextran端的初级胺功能组。SA 然后被结合形成 SPIO-EDBE-SA。SPIO-MtbsAb 纳米探针在耦合剂存在的情况下,通过 MtbsAb 与 SPIO-EDBE-SA 结合,在最后一步中形成。SPIO-MtbsAb纳米探针的TEM图像(图1)表明SPIO-MtbsAb纳米探针的外…

Discussion

与相关研究类似,我们对SPIO-MtbsAb纳米探针的发现表明Mtb27、28具有显著特异性。在小鼠模型中注射TB后1个月,发现了皮下Mtb肉芽肿。典型的结核肉芽肿学发现包括淋巴细胞渗透、上皮性巨噬细胞的存在和新血管化。酸速杆菌分散在结核病变中,证实了MtbsAb免疫性化学发现。这表明Mtb表面抗原和MtbsAb之间的免疫反应。柏林蓝突出显示了与MtbsAb相同的区域?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢台湾经济部(NSC-101-2120-M-038-001,MOST 104-2622-B-038-007,MOST 105-2622-B-038-004)的财政支持,以开展此项研究工作。这份手稿由华莱士学术编辑编辑编辑。

Materials

(benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate Sigma-Aldrich
1-hydroxybenzotriazole Sigma-Aldrich
dextran(T-40) GE Healthcare Bio-sciences AB
epichlorohydrin, 2,2'-(ethylenedioxy)bis(ethylamine) Sigma-Aldrich
ferric chloride hexahydrate Fluka
ferrous chloride tetrahydrate Fluka
Human monocytic THP-1
M. bovis BCG Pasteur Mérieux Connaught strain; ImmuCyst Aventis
MRI GE medical Systems 3.0-T, Signa
NH4OH Fluka
NMR relaxometer Bruker NMS-120 Minispec
Sephacryl S-300 GE Healthcare Bio-sciences AB
Sephadex G-25 GE Healthcare Bio-sciences AB
SPECTRUM molecular porous membrane tubing, 12,000 -14,000 MW cut off Spectrum Laboratories Inc
TB surface antibody- Polyclonal Antibody to Mtb Acris Antibodies GmbH BP2027
transmission electron microscope JEOL JEM-2000 EX II

References

  1. Small, P. M., et al. Treatment of tuberculosis in patients with advanced human immunodeficiency virus infection. New England Journal of Medicine. 324, 289-294 (1991).
  2. Alvarez, S., McCabe, W. R. Extrapulmonary tuberculosis revisited: a review of experience at Boston City and other hospitals. Medicine. 63, 25-55 (1984).
  3. Ozbay, B., Uzun, K. Extrapulmonary tuberculosis in high prevalence of tuberculosis and low prevalence of HIV. Clinics in Chest Medicine. 23, 351-354 (2002).
  4. Ebdrup, L., Storgaard, M., Jensen-Fangel, S., Obel, N. Ten years of extrapulmonary tuberculosis in a Danish university clinic. Scandinavian Journal of Infectious Diseases. 35, 244-246 (2003).
  5. Steingart, K. R., et al. A systematic review of commercial serological antibody detection tests for the diagnosis of extrapulmonary tuberculosis. Postgraduate Medical Journal. 83, 705-712 (2007).
  6. Liao, C. H., et al. Diagnostic performance of an enzyme-linked immunospot assay for interferon-gamma in extrapulmonary tuberculosis varies between different sites of disease. Journal of Infection. 59, 402-408 (2009).
  7. Kim, S. H., et al. Diagnostic usefulness of a T-cell based assay for extrapulmonary tuberculosis. Archives of Internal Medicine. 167, 2255-2259 (2007).
  8. Kim, S. H., et al. Diagnostic usefulness of a T-cell-based assay for extrapulmonary tuberculosis in immunocompromised patients. The American Journal of Medicine. 122, 189-195 (2009).
  9. Pai, M., Zwerling, A., Menzies, D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Annals of Internal Medicine. 149, 177-184 (2008).
  10. Kobashi, Y., et al. Clinical utility of a T cell-based assay in the diagnosis of extrapulmonary tuberculosis. Respirology. 14, 276-281 (2009).
  11. Paluch-Oles, J., Magrys, A., Kot, E., Koziol-Montewka, M. Rapid identification of tuberculosis epididymo-orchitis by INNO-LiPA Rif TB and QuantiFERON-TB Gold In Tube tests: case report. Diagnostic Microbiology and Infectious Disease. 66, 314-317 (2010).
  12. Kaneko, K., Onodera, O., Miyatake, T., Tsuji, S. Rapid diagnosis of tuberculous meningitis by polymerase chain reaction (PCR). Neurology. 40, 1617 (1990).
  13. Bhigjee, A. I., et al. Diagnosis of tuberculous meningitis: clinical and laboratory parameters. International Journal of Infectious Diseases. 11, 348-354 (2007).
  14. Miyawaki, A., Sawano, A., Kogure, T. Lighting up cells: labelling proteins with fluorophores. Nature Cell Biology. , 1-7 (2003).
  15. Weissleder, R., Mahmood, U. Molecular imaging. Radiology. 219, 316-333 (2001).
  16. Gupta, A. K., Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995-4021 (2005).
  17. Talelli, M., et al. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir. 25, 2060-2067 (2009).
  18. Cho, W. S., et al. Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging. Toxicology and Applied Pharmacology. , 106-115 (2009).
  19. Mahmoudi, M., Simchi, A., Milani, A. S., Stroeve, P. Cell toxicity of superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science. 336, 510-518 (2009).
  20. Chen, T. J., et al. Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. Journal of Biomedical Materials Research Part A. 87, 165-175 (2008).
  21. Chen, T. J., et al. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. Journal of Biological Inorganic Chemistry. 14, 253-260 (2009).
  22. Weissleder, R., et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 175, 494-498 (1990).
  23. Wang, J., Wakeham, J., Harkness, R., Xing, Z. Macrophages are a significant source of type 1 cytokines during mycobacterial infection. Journal of Clinical Investigation. 103, 1023-1029 (1999).
  24. Angra, P., Ridderhof, J., Smithwick, R. Comparison of two different strengths of carbol fuchsin in Ziehl-Neelsen staining for detecting acid-fast bacilli. Journal of Clinical Microbiology. 41, 3459 (2003).
  25. Woods, A. E., Ellis, R. . Laboratory Histopathology- A Complete Reference. 1st edn. , 6-11 (1994).
  26. Lee, C. N., et al. Super-paramagnetic iron oxide nanoparticles for use in extrapulmonary tuberculosis diagnosis. Clinical Microbiology and Infection. 18, 149-157 (2012).
  27. Lee, H., Yoon, T. J., Weissleder, R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angewandte Chemie International Edition. 48, 5657-5660 (2009).
  28. Fan, Z., et al. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chemistry. 19, 2839-2847 (2013).
  29. Nishie, A., et al. In vitro imaging of human monocytic cellular activity using superparamagnetic iron oxide. Computerized Medical Imaging and Graphics. 31, 638-642 (2007).
  30. von Zur Muhlen, C., et al. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis. 193, 102-111 (2007).

Play Video

Cite This Article
Lee, C., Chiu, L., Fang, C., Yeh, S., Zuo, C. S., Chen, S., Kuo, L., Wang, Y., Lai, W. T. Synthesis, Characterization, and Application of Superparamagnetic Iron Oxide Nanoprobes for Extrapulmonary Tuberculosis Detection. J. Vis. Exp. (156), e58227, doi:10.3791/58227 (2020).

View Video