Summary

细胞周期特异性测量βH2AX和细胞凋亡后热源毒性应力通过流细胞测定

Published: September 01, 2019
doi:

Summary

该方法结合了DNA双链断裂(DSB)、细胞循环分布和凋亡的定量分析,实现了对DSB诱导和修复以及修复失败后果的细胞周期特定评估。

Abstract

提出的方法或稍作修改的版本已经设计,以研究特定的治疗反应和副作用的各种抗癌治疗,用于临床肿瘤学。它能够定量和纵向分析基因毒性应激后DNA损伤反应,如放射治疗和多种抗癌药物引起的。该方法涵盖DNA损伤反应的所有阶段,为诱导和修复DNA双链断裂(DSBs)、细胞周期抑制和在修复失败时细胞凋亡导致细胞死亡提供终点。结合这些测量提供了有关细胞周期依赖治疗效果的信息,从而可以深入研究细胞增殖和应对DNA损伤的机制之间的相互作用。由于许多癌症治疗(包括化疗剂和电离辐射)的作用仅限于或根据特定的细胞周期阶段而产生强烈变化,相关分析依赖于一种可靠和可行的方法来评估治疗效果以细胞周期特定的方式在DNA上。单端点检测不可能实现这一点,而且该方法具有重要优势。该方法不局限于任何特定的细胞系,并已在众多肿瘤和正常组织细胞系中进行了彻底测试。除放射肿瘤学外,在肿瘤学的许多领域,包括环境危险因素评估、药物筛选和肿瘤细胞遗传不稳定性评价,可广泛应用。

Introduction

肿瘤学的目标是在不损害正常细胞的情况下杀死或使癌细胞灭活。许多疗法要么直接或间接地诱导癌细胞中的基因毒性应激,但也在正常细胞中有些延伸。化疗或靶向药物通常与放射治疗相结合,以提高辐照肿瘤1、2、3、4、5的放射敏感性,从而减少辐射剂量,以尽量减少正常的组织损伤。

电离辐射和其他基因毒性剂会诱发不同类型的DNA损伤,包括基体修饰、链交联和单股或双链断裂。脱氧核糖核酸双链断裂(DSBs)是最严重的DNA病变,其诱导是电离辐射和各种细胞静血药物在放射化疗中细胞杀灭作用的关键。DSB不仅会损害基因组的完整性,而且促进突变6、7的形成。因此,不同的DSB修复途径,以及消除不可修复的细胞(如凋亡)的机制在进化过程中已经形成。整个DNA损伤反应(DDR)由复杂的信号通路网络调节,从DNA损伤识别和细胞周期抑制到允许DNA修复,到程序化细胞死亡或失活的情况下修复失败8。

已开发流式细胞测定法,用于在一次涵盖 DSB 感应和修复的综合测定中,对基因毒性应力后的 DDR 进行调查,以及修复失败的后果。它结合广泛应用的DSB标记βH2AX的测量与细胞周期和凋亡诱导的分析相结合,使用经典的subG1分析和更具体的卡巴塞-3活化评估。

将这些端点组合在一个测定中不仅减少了时间、人工和成本支出,还实现了对DSB感应和修复以及caspase-3活化的细胞周期特定测量。这种分析不可能与独立进行的分析,但它们对于全面了解基因毒性压力后DNA损伤反应具有高度相关性。许多抗癌药物,如细胞静态化合物,针对分裂细胞,其效率在很大程度上取决于细胞周期阶段。不同DSB修复过程的可用性也取决于细胞周期阶段和路径选择,这对修复精度至关重要,进而决定细胞9、10、11的命运。 12.此外,对DSB水平的细胞周期特定测量比集中分析更准确,因为DSB水平不仅取决于基因毒性化合物或辐射的剂量,还取决于细胞的DNA含量。

该方法已用于比较不同放射疗法的疗效,以克服胶质细胞瘤13的抗药性机制,并剖析电离辐射和骨肉瘤14、15中靶向药物的相互作用和非典型畸状类人横纹癌16。此外,所述方法已被广泛用于分析无线电和化疗对介体干细胞17、18、19、20、21的副作用。 22,23,24,这是修复治疗引起的正常组织损伤,并在再生医学中具有潜在的应用。

Protocol

1. 准备 在任何类型的培养容器中制备 ±1 x 105细胞/样品作为起始材料。 例如,在将U87胶质细胞细胞暴露于电离辐射后进行时间过程实验:在每个时间点以三联成的T25瓶中辐照亚汇U87细胞。选择早期时间点(辐照后 15 分钟至 8 小时),跟随 DSB 修复动力学(+H2AX 级别)和后期时间点(24 小时至 96 小时),以评估残留 DSB 水平、细胞周期效应和凋亡。注?…

Representative Results

人类U87或LN229胶质细胞细胞受到4Gy光子或碳离子电池辐射的照射。使用此处介绍的流式细胞测定方法(图3),在辐照后48小时的不同时间点测量细胞周期特异性βH2AX水平和凋亡。在两种细胞系中,碳离子诱导更高的βH2AX峰值水平,下降速度较慢,在24至48小时时与相同物理剂量的光子辐射相比显著升高(图4A)。这表明,与修复效率较低的光…

Discussion

该特色方法易于使用,并提供快速、准确和可重复的DNA损伤响应测量,包括双链断裂(DSB)诱导和修复、细胞周期效应和凋亡细胞死亡。与单个测定相比,这些端点的组合提供了更完整的两性关系图。该方法可广泛应用于放射生物学、治疗和保护领域的综合基因毒性测定,更普遍地应用于肿瘤学(例如,环境风险因素评估、药物筛选和基因评估)肿瘤细胞的不稳定性)。

该?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢德国癌症研究中心(DKFZ)的流式细胞测定设施团队的支持。

Materials

1000 µL filter tips Nerbe plus 07-693-8300
100-1000 µL pipette Eppendorf 3123000063
12 x 75 mm Tubes with Cell Strainer Cap, 35 µm mesh pore size BD Falcon 352235
15 mL tubes BD Falcon 352096
200 µL filter tips Nerbe plus 07-662-8300
20-200 µL pipette Eppendorf 3123000055
4’,6-Diamidin-2-phenylindol (DAPI) Sigma-Aldrich D9542 Dissolve in water at 200 µg/ml and store aliquots at -20 °C
Alexa Fluor 488 anti-H2A.X Phospho (Ser139) Antibody, RRID: AB_2248011 BioLegend 613406 Dilute 1:20
Alexa Fluor 647 Rabbit Anti-Active Caspase-3 Antibody, AB_1727414 BD Pharmingen 560626 Dilute 1:20
BD FACSClean solution BD Biosciences 340345 For cytometer cleaning routine after measurement
BD FACSRinse solution BD Biosciences 340346 For cytometer cleaning routine after measurement
Dulbecco’s Phosphate Buffered Saline (PBS) Biochrom L 182 Dissolve in water to 1x concentration
Dulbecco's Modified Eagle's Medium with stable glutamin Biochrom FG 0415 Routine cell culture material for the example cell line used in the protocol
Ethanol absolute VWR 20821.330
Excel software Microsoft
FBS Superior (fetal bovine serum) Biochrom S 0615 Routine cell culture material for the example cell line used in the protocol
FlowJo v10 software LLC online order
Fluoromount-G SouthernBiotech 0100-01 Embedding medium for optional preparation of microscopic slides from stained samples
folded cellulose filters, grade 3hw NeoLab 11416
LSRII or LSRFortessa cytometer BD Biosciences
MG132 Calbiochem 474787 optional drug for apoptosis positive control
Multifuge 3SR+ Heraeus
Paraformaldehyde AppliChem A3813 Prepare 4.5% solution fresh. Dilute in PBS by heating to 80 °C with slow stirring under the fume hood. Cover the flask with aluminium foil to prevent heat loss. Let the solution cool to room temperature and adjust the final volume. Pass the solution through a cellulose filter.
Phospho-Histone H3 (Ser10) (D2C8) XP Rabbit mAb (Alexa Fluor® 555 Conjugate) RRID: AB_10694639 Cell Signaling Technology #3475 Dilute 3:200
PIPETBOY acu 2 Integra Biosciences 155 016
Serological pipettes, 10 mL Corning 4488
Serological pipettes, 25 mL Corning 4489
Serological pipettes, 5 mL Corning 4487
SuperKillerTRAIL (modified TNF-related apoptosis-inducing ligand) Biomol AG-40T-0002-C020 optional drug for apoptosis positive control
T25 cell culture flasks Greiner bio-one 690160 Routine cell culture material for the example cell line used in the protocol
Trypsin/EDTA PAN Biotech P10-025500 Routine cell culture material for the example cell line used in the protocol
U87 MG glioblastoma cells ATCC ATCC-HTB-14 Example cell line used in the protocol

References

  1. Jensen, A., et al. Treatment of non-small cell lung cancer with intensity-modulated radiation therapy in combination with cetuximab: the NEAR protocol (NCT00115518). BMC Cancer. 6, 122 (2006).
  2. Oertel, S., et al. Human Glioblastoma and Carcinoma Xenograft Tumors Treated by Combined Radiation and Imatinib (Gleevec). Strahlentherapie und Onkologie. 182 (7), 400-407 (2006).
  3. Timke, C., et al. Combination of Vascular Endothelial Growth Factor Receptor/Platelet-Derived Growth Factor Receptor Inhibition Markedly Improves Radiation Tumor Therapy. Clinical Cancer Research. 14 (7), 2210-2219 (2008).
  4. Zhang, M., et al. Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia. 13 (6), 537-549 (2011).
  5. Blattmann, C., et al. Suberoylanilide hydroxamic acid affects expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation. Strahlentherapie und Onkologie. 188 (2), 168-176 (2012).
  6. Hoeijmakers, J. H. DNA Damage, Aging, and Cancer. New England Journal of Medicine. 361 (15), 1475-1485 (2015).
  7. Rodgers, K., McVey, M. Error-Prone Repair of DNA Double-Strand Breaks. Journal of Cellular Physiology. 231 (1), 15-24 (2016).
  8. Ciccia, A., Elledge, S. J. The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell. 40 (2), 179-204 (2010).
  9. Rothkamm, K., Krüger, I., Thompson, L. H., Löbrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Molecular and Cellular Biology. 23 (16), 5706-5715 (2003).
  10. Escribano-Díaz, C., et al. A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Molecular Cell. 49 (5), 872-883 (2013).
  11. Bakr, A., et al. Functional crosstalk between DNA damage response proteins 53BP1 and BRCA1 regulates double strand break repair choice. Radiotherapy and Oncology. 119 (2), 276-281 (2015).
  12. Mladenov, E., Magin, S., Soni, A., Iliakis, G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Seminars in Cancer Biology. 37-38, 51-64 (2016).
  13. Lopez Perez, R., et al. DNA damage response of clinical carbon ion versus photon radiation in human glioblastoma cells. Radiotherapy and Oncology. 133, 77-86 (2019).
  14. Oertel, S., et al. Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines. Radiation oncology. 6 (1), 119 (2011).
  15. Blattmann, C., et al. Suberoylanilide hydroxamic acid affects γH2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation. Strahlentherapie und Onkologie. 188 (2), 168-176 (2012).
  16. Thiemann, M., et al. In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model. Radiation Oncology. 7 (1), 52 (2012).
  17. Nicolay, N. H., et al. Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation. International Journal of Radiation Oncology Biology Physics. 87 (5), 1171-1178 (2013).
  18. Nicolay, N. H., et al. Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget. 6 (4), 2076-2087 (2015).
  19. Nicolay, N. H., et al. Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer letters. 374 (1), 75-84 (2016).
  20. Nicolay, N. H., et al. Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Scientific Reports. 6, 20035 (2016).
  21. Nicolay, N. H., et al. Mesenchymal stem cells are sensitive to bleomycin treatment. Scientific Reports. 6, 26645 (2016).
  22. Rühle, A., et al. Cisplatin radiosensitizes radioresistant human mesenchymal stem cells. Oncotarget. 8 (50), 87809-87820 (2017).
  23. Münz, F., et al. Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Scientific Reports. 8 (1), 312 (2018).
  24. Rühle, A., et al. The Radiation Resistance of Human Multipotent Mesenchymal Stromal Cells Is Independent of Their Tissue of Origin. International Journal of Radiation Oncology Biology Physics. 100 (5), 1259-1269 (2018).
  25. Dean, P. N., Jett, J. H. Mathematical analysis of DNA distributions derived from flow microfluorometry. Journal of Cell Biology. 60 (2), 523-527 (1974).
  26. Fox, M. H. A model for the computer analysis of synchronous DNA distributions obtained by flow cytometry. Cytometry. 1 (1), 71-77 (1980).
  27. Costes, S. V., Boissière, A., Ravani, S., Romano, R., Parvin, B., Barcellos-Hoff, M. H. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiation Research. 165 (5), 505-515 (2006).
  28. Meyer, B., Voss, K. -. O., Tobias, F., Jakob, B., Durante, M., Taucher-Scholz, G. Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Nucleic Acids Research. 41 (12), 6109-6118 (2013).
  29. Lopez Perez, R., et al. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. FASEB. 30 (8), 2767-2776 (2016).
  30. Schipler, A., Iliakis, G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Research. 41 (16), 7589-7605 (2013).
  31. Stenerlow, B., Hoglund, E., Carlsson, J. DNA fragmentation by charged particle tracks. Advances in Space Research. 30 (4), 859-863 (2002).
  32. Friedland, W., et al. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Scientific Reports. 7, 45161 (2017).
  33. Pang, D., Chasovskikh, S., Rodgers, J. E., Dritschilo, A. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy. Frontiers in Oncology. 6, 130 (2016).
  34. Böcker, W., Iliakis, G. Computational Methods for analysis of foci: validation for radiation-induced gamma-H2AX foci in human cells. Radiation Research. 165 (1), 113-124 (2006).
  35. Löbrich, M., et al. γH2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization. Cell Cycle. 9 (4), 662-669 (2010).
check_url/59968?article_type=t

Play Video

Cite This Article
Lopez Perez, R., Münz, F., Kroschke, J., Brauer, J., Nicolay, N. H., Huber, P. E. Cell Cycle-specific Measurement of γH2AX and Apoptosis After Genotoxic Stress by Flow Cytometry. J. Vis. Exp. (151), e59968, doi:10.3791/59968 (2019).

View Video