Summary

Um modelo de cultura de órgão endotelial corneano porcina usando Split córnea botões

Published: October 06, 2019
doi:

Summary

Aqui, um protocolo passo a passo para a preparação e o cultivo de botões córneos rachados suínos é apresentado. Como este modelo organo-tipicamente cultivado da cultura do órgão mostra taxas de morte da pilha dentro de 15 dias, comparável às córneas doadoras humanas, representa o primeiro modelo permitindo o cultivo a longo prazo de córneas não-humanas sem adicionar o Dextran tóxico.

Abstract

A pesquisa experimental sobre as células endoteliais da córnea está associada a várias dificuldades. As córneas doadoras humanas são escassas e raramente estão disponíveis para investigações experimentais, pois são normalmente necessárias para o transplante. As culturas de células endoteliais muitas vezes não se traduzem bem em situações in vivo. Devido às características bioestruturais de córneas não humanas, o inchamento stromal durante o cultivo induz a perda endothelial córnea substancial da pilha, que faz difícil executar o cultivo por um período de tempo prolongado. Os agentes de deswelling tais como o dextrano são usados para neutralizar esta resposta. No entanto, eles também causam significativa perda de células endoteliais. Portanto, estabeleceu-se um modelo de cultura de órgãos ex vivo que não necessitava de agentes de deswelling. Os olhos do porco de um matadouro local foram usados para preparar os botões córneos rachados. Após a trephinação córnea parcial, as camadas exteriores da córnea (epitélio, camada do Bowman, partes do estroma) foram removidas. Isto reduz significativamente a perda endothelial córnea da pilha induzida pelo inchamento stromal maciço e Descemet ‘ dobra da membrana de s durante períodos mais longos do cultivo e melhora a preservação geral da camada endothelial da pilha. O trefinação córneo completo subseqüente foi seguido pela remoção da tecla córnea rachada do bulbo e do cultivo restantes do olho. A densidade de células endoteliais foi avaliada em tempos de seguimento de até 15 dias após a preparação (i.e., dias 1, 8, 15) utilizando microscopia de luz. A técnica da preparação usada permite uma melhor preservação da camada endothelial da pilha permitida pelo inchamento menos stromal do tecido, que conduz às taxas lentas e lineares do declínio nos botões córneos rachados comparáveis às córneas doadoras humanas. Como este modelo de pesquisa organo-tipicamente cultivado padronizado pela primeira vez permite um cultivo estável por pelo menos duas semanas, é uma alternativa valiosa para as córneas de doadores humanos para futuras investigações de vários fatores externos em relação à sua efeitos sobre o endotélio corneano.

Introduction

Os procedimentos de transplante de córnea estão entre os transplantações mais comumente realizados no mundo1. Como há uma escassez severa de córneas doadoras humanas, a pesquisa experimental que aborda as células endoteliais corneanas em córneas humanas é difícil de realizar1. No entanto, a introdução de soluções de irrigação e outras substâncias utilizadas no olho, dispositivos viscoelásticos oftalmológicos, bem como instrumentos e técnicas cirúrgicas (por exemplo, instrumentos e técnicas de facoemulsificação, energia de ultra-som) requer investigações válidas e extensivas a respeito de seus efeitos no endotélio córneo antes do uso clínico.

Poucas alternativas às córneas doadoras humanas existem para a pesquisa. Modelos de pesquisa animal são muito valiosos, mas ao mesmo tempo muito consumo de recursos e cada vez mais questionado eticamente. Uma grande desvantagem das culturas de células in vitro é a sua tradução limitada para o olho humano. Os resultados obtidos a partir de culturas celulares podem ser incongruentes em condições in vivo, pois as células podem sofrer transição mesenquimal endotelial (EMT), resultando em morfologia fibroblástica causada pela perda da polaridade celular e alterações na forma celular e no gene expressão2.

Considerando que os modelos ex vivo anteriores relataram períodos de cultivo de até apenas 120 h, uma nova técnica de preparo para estabelecer um modelo de cultura de órgãos endoteliais da córnea porcina, cultivando córneas de suínos frescos por pelo menos 15 dias foi recentemente introduzida3 ,4,5,6. Se o epitélio corneano e as partes do estroma forem removidos (aproximadamente 300 μm no total) da córnea antes do cultivo, o inchaço do estroma é reduzido em botões córneos divididos, resultando em menor perda de células endoteliais e um bem mantido endotelial camada da pilha após até 15 dias, visto que os botões córneos não-rachados mostram a perda endothelial significativa da pilha devido ao inchamento stromal desigual e à formação de Descemet ‘ dobras de s. Os bancos do olho usam geralmente agentes de deswelling osmótica tais como o dextrano para reduzir o inchamento das córneas antes da transplantação. Entretanto, esses agentes demonstraram induzir aumento da perdadecélulas endoteliais7,8,9.

Este artigo tem como objetivo Visualizar este modelo de pesquisa ex vivo padronizado em um protocolo detalhado passo a passo, a fim de permitir que futuros investigadores realizem pesquisas sobre o endotélio corneano usando botões córneos divididos. Este modelo representa um método direto para testar substâncias e técnicas utilizadas dentro do olho, tais como dispositivos viscoelásticos oftalmológicos, soluções de irrigação, e energia de ultra-som, ou outros procedimentos onde o endotélio corneano é de interesse.

Protocol

Este protocolo segue as diretrizes éticas de nossa instituição. De acordo com os estatutos do Comitê de revisão ética da nossa instituição, nenhuma aprovação ética teve que ser obtida antes dos experimentos, pois todas as córneas suíno foram obtidas do matadouro local. 1. cultura de órgãos Prepare os olhos de porco. Do matadouro local, obtenha os olhos do porco que foram removidos logo pós-morte mas antes do tratamento térmico. Transportar os olhos para o lab…

Representative Results

A técnica de dissecção apresentada implica a remoção parcial do tecido estromal, resultando em uma amostra de córnea mais fina e, portanto, menos inchaço estromal (Figura 1 e Figura 2). Menos inchaço estromal induz menos cisalhamento e apertar forças que têm um impacto negativo sobre o endotélio corneano, causando menor taxa de perda de células endoteliais6. As teclas córneas rachadas mostram …

Discussion

Este protocolo fornece um método para a preparação de botões córneos rachados suínos, que represente um modelo endotélio da cultura do órgão endothelial ex vivo estandardizado e de baixo custo para finalidades da pesquisa6. Os botões córneos rachados porcine mostraram uma diminuição da densidade endothelial da pilha comparável às perdas endothelial da pilha observadas nas córneas doadoras humanas cultivadas em bancos do olho durante um período de duas semanas6</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

O estabelecimento do modelo de pesquisa apresentado foi apoiado pelo KMU-Innovativ (FKZ: 13GW0037F) do Ministério Federal da educação e pesquisa da Alemanha.

Materials

Subject
Pig eyes local abbatoir
Substances
Alizarin red S Sigma-Aldrich, USA
Culture Medium 1, #F9016 Biochrom GmbH, Germany
Dulbecco's PBS (1x) Gibco, USA
Fetal calf serum Biochrom GmbH, Germany
Hydrochloric acid (HCl) solution own production
Hypotonic balanced salt solution own production per 1 L of H2O: NaCl 4.9 g; KCl 0.75 g; CaCl x H2O 0.49 g; MgCl2 x H2O 0.3 g; Sodium Acetate x 3 H2O 3.9 g; Sodium Citrate x 2 H2O 1.7 g
Povidon iodine 7.5%, Braunol B. Braun Melsungen AG, Germany
Sodium chloride (NaCl) 0.9% B. Braun Melsungen AG, Germany
Sodium hydroxide (NaOH) solution own production
Trypan blue 0.4% Sigma-Aldrich, USA
Materials & Instruments
Accu-jet pro Brand GmbH, Germany
Beaker Glass 50 mL Schott AG, Germany
Blunt cannula incl. Filter (5 µm) 18G Becton Dickinson, USA
Cell culture plate (12 well) Corning Inc., USA
Colibri forceps Geuder AG, Germany
Corneal scissors Geuder AG, Germany
Eppendorf pipette Eppendorf AG, Germany
Eye Bulb Holder L. Klein, Germany
Eye scissors Geuder AG, Germany
Folded Filter ø 185 mm Whatman, USA
Hockey knife Geuder AG, Germany
Laboratory Glass Bottle with cap 100 mL Schott AG, Germany
Magnetic stir bar Carl Roth GmbH & Co. KG, Germany
MillexGV Filter (5 µm) Merck Millopore Ltd., USA
Needler holder Geuder AG, Germany
Petri dishes VWR International, USA
Pipette tips Sarstedt AG & Co., Germany
Scalpel (single use), triangular blade Aesculap AG & Co. KG, Germany
Serological pipette 10 mL Sarstedt AG & Co., Germany
Serological pipette 5 mL Sarstedt AG & Co., Germany
Sterile cups Greiner Bio-One, Österreich
Sterile gloves Paul Hartmann AG, Germany
Sterile surgical drape Paul Hartmann AG, Germany
Stitch scissors Geuder AG, Germany
Suture Ethilon 10-0 Polyamid 6 Ethicon Inc., USA
Syringe (5 mL) Becton Dickinson, USA
trephine ø 7.5 mm own production
Tying forceps Geuder AG, Germany
Weighing paper neoLab Migge GmbH, Germany
Equipment & Software
Binocular surgical microscope Carl Zeiss AG, Germany
Camera mounted on microscope Olympus, Japan
CellSens Entry (software) Olympus, Japan
Cold-light source Schott AG, Germany
Incubator Heraeus GmbH, Germany
Inverted phase contrast microscope Olympus GmbH, Germany
Magnetic stirrer with heating function IKA-Werke GmbH & Co. KG, Germany
pH-meter pHenomenal VWR International, USA
Photoshop CS2 Adobe Systems, USA
Precision scale Ohaus Europe GmbH, Switzerland

References

  1. Gain, P., et al. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmology. 134 (2), 167-173 (2016).
  2. Roy, O., et al. Understanding the process of corneal endothelial morphological change in vitro. Investigative Ophthalmology & Visual Science. 56 (2), 1228-1237 (2015).
  3. Meltendorf, C., Ohrloff, C., Rieck, P., Schroeter, J. Endothelial cell density in porcine corneas after exposure to hypotonic solutions. Graefe’s Archive for Clinical and Experimental Ophthalmology. 245 (1), 143-147 (2007).
  4. Schroeter, J., Meltendorf, C., Ohrloff, C., Rieck, P. Influence of temporary hypothermia on corneal endothelial cell density during organ culture preservation. Graefe’s Archive for Clinical and Experimental Ophthalmology. 246 (3), 369-372 (2008).
  5. Schroeter, J., Ruggeri, A., Thieme, H. Impact of temporary hyperthermia on corneal endothelial cell survival during organ culture preservation. Graefe’s Archive for Clinical and Experimental Ophthalmology. 253 (5), 753-758 (2015).
  6. Kunzmann, B. C., et al. Establishment Of A Porcine Corneal Endothelial Organ Culture Model For Research Purposes. Cell and Tissue Banking. 19 (3), 269-276 (2018).
  7. Redbrake, C., et al. A histochemical study of the distribution of dextran 500 in human corneas during organ culture. Current Eye Research. 16 (5), 405-411 (1997).
  8. Zhao, M., et al. Poloxamines for Deswelling of Organ-Cultured Corneas. Ophthalmic Research. 48 (2), 124-133 (2012).
  9. Filev, F., et al. Semi-quantitative assessments of dextran toxicity on corneal endothelium: conceptual design of a predictive algorithm. Cell and Tissue Banking. 18 (1), 91-98 (2017).
  10. Pels, E., Schuchard, Y. Organ-culture preservation of human corneas. Documenta Ophthalmologica. 56 (1-2), 147-153 (1983).
  11. Borderie, V. M., Kantelip, B. M., Delbosc, B. Y., Oppermann, M. T., Laroche, L. Morphology, Histology and Ultrastructure of Human C31 Organ-Cultured Corneas. Cornea. 14 (3), 300-310 (1995).
  12. Linke, S. J., et al. Thirty years of cornea cultivation: long-term experience in a single eye bank. Acta Opthalmologica. 91 (6), 571-578 (2013).
  13. Schroeter, J., et al. Arbeitsrichtlinien – Gute Fachliche Praxis für Hornhautbanken [Procedural guidelines. Good tissue practice for cornea banks]. Ophthalmologe. 106 (3), 265-276 (2009).
  14. Dohlman, C. H., Hedbys, B. O., Mishima, S. The swelling pressure of the corneal stroma. Investigative Ophthalmology & Visual Science. 1, 158-162 (1962).
  15. Xuan, M., et al. Proteins of the corneal stroma: importance in visual function. Cell and Tissue Research. 364 (1), 9-16 (2016).
  16. Sperling, S. Human Corneal Endothelium in Organ Culture – The Influence of Temperature and Medium of Incubation. Acta Opthalmologica. 57 (2), 269-276 (1979).
  17. Schroeter, J. Endothelial Evaluation in the Cornea Bank. Developments in Ophthalmology. 43, 47-62 (2009).
  18. Pels, E., Schuchard, Y. The Effects of High Molecular Weight dextran on the Presevation of Human Corneas. Cornea. 3 (3), 219-227 (1985).
  19. van der Want, H. J. L., Pels, E., Schuchard, Y., Olesen, B., Sperling, S. Electron Microscopy of Cultured Human Corneas Osmotic Hydration and the Use of dextran Fraction (dextran T 500) in Organ Culture. Archives of Ophthalmology. 101 (12), 1920-1926 (1983).
  20. Thuret, G., Manissolle, C., Campos-Guyotat, L., Guyotat, D., Gain, P. Animal compound-free medium and poloxamer for human corneal organ culture and Deswelling. Investigative Ophthalmology & Visual Science. 46 (3), 816-822 (2005).
  21. Wenzel, D. A., Kunzmann, B. C., Spitzer, M. S., Schultheiss, M. Staining of endothelial cells does not change the result of cell density. Cell and Tissue Banking. 20 (2), 327-328 (2019).
  22. Wenzel, D. A., Kunzmann, B. C., Hellwinkel, O., Druchkiv, V., Spitzer, M. S., Schultheiss, M. Effects of perfluorobutylpentane (F4H5) on corneal endothelial cells. Current Eye Research. , (2019).
  23. Olsson, I. A. S., Franco, N. H., Weary, D. M., Sandøe, P. The 3Rs principle – mind the ethical gap!. ALTEX Proceedings, 1/12, Proceedings of WC8. , 333-336 (2012).
  24. Sanchez, I., Martin, R., Ussa, F., Fernandez-Bueno, I. The parameters of the porcine eyeball. Graefe’s Archive for Clinical and Experimental Ophthalmology. 249 (4), 475-482 (2011).
  25. Kim, M. K., Hara, H. Current status of corneal xenotransplantation. International Journal of Surgery. 23 (Pt B), 255-260 (2015).
  26. Fujita, M., et al. Comparison of Proliferative Capacity of Genetically-Engineered Pig and Human. Ophthalmic Research. 49 (3), 127-138 (2013).
check_url/60171?article_type=t

Play Video

Cite This Article
Wenzel, D. A., Kunzmann, B. C., Steinhorst, N. A., Spitzer, M. S., Schultheiss, M. A Porcine Corneal Endothelial Organ Culture Model Using Split Corneal Buttons. J. Vis. Exp. (152), e60171, doi:10.3791/60171 (2019).

View Video