Summary

通过四氯化碳诱导大鼠急性肝损伤 (CCl4) 通过奥罗胃管暴露

Published: April 28, 2020
doi:

Summary

该协议描述了通过CCl4暴露通过奥胃管诱导急性肝损伤(ALI)的一种常见和可行的方法。CCl4暴露在肝脏生物转化过程中通过活性氧物种的形成诱导 ALI。该方法用于分析ALI的病理生理学,并研究不同的肝保护策略。

Abstract

急性肝损伤(ALI)在肝功能衰竭的发展中起着至关重要的作用,肝功能障碍的特点是严重的肝功能障碍,包括肝脑病和蛋白质合成受损等并发症。适当的动物模型对于测试ALI的机制和病理生理学以及研究不同的肝保护策略至关重要。由于其进行化学转化的能力,四氯化碳(CCl4)在肝脏中被广泛用于通过活性氧物种的形成诱导ALI。CCl4暴露可以通过腹内、吸入或通过鼻胃或奥胃管进行。在这里,我们描述了一个啮齿动物模型,其中ALI是由CCl4通过奥胃管暴露诱导的。该方法价格低廉,易于执行,风险最小。该模型具有很高的可重复性,可广泛用于确定潜在的肝保护策略的有效性和评估肝损伤的标记。

Introduction

对肝脏的毒性侮辱的频率正在增加,特别是由于酗酒和吸毒。急性肝损伤(ALI)与高死亡率相关,并引起临床关注11,2。2毒性损伤导致肝脏死亡信号通路,导致肝细胞凋亡、坏死或肺气肿。ALI在肝功能衰竭的发展中起着至关重要的作用,其特征是严重的肝功能障碍,包括肝脑病和蛋白质合成受损等并发症3、4。4虽然最近的研究增加了我们对肝衰竭伴随的生理和病理变化的认识,但它并没有完全解释影响细胞死亡机制的病理分子特征。此外,目前尚无药物来扭转ALI患者的逐渐恶化。目前,唯一有效治疗的是肝移植55、6。6

为了研究ALI的机制和病理生理学,并测试不同的肝保护策略,使用不同的动物模型来诱导ALI。ALI的可取动物模型应该通过可靠、验证、廉价和易于应用的方法模拟疾病的病理过程。实验模型的例子包括肝毒性剂、手术程序,如完全或部分肝切除术,完全或暂时脱血管,以及感染性手术77,8,9。8,9已知的肝毒性物质包括甲酰胺、对乙酰氨基酚、硫酰胺、阿氧西甲烷和CCl4。其中,CCl4虽然尚未得到很好的应用,但其特征尚未得到很好的10、11、12、13。10,11,12,13

CCl4是一种有机无色液体化合物,气味甜美,在低温下几乎无可燃性。暴露于高浓度的CCl4可对中枢神经系统造成损伤,包括肝脏和肾脏的恶化。CCl4通过肝脏的生物转化诱导ALI,形成活性氧物种。这通过P450细胞色素酶2E1发生,形成活性代谢物,通过大分子结合、增强脂质过氧化和细胞内钙平衡扰动14引起细胞损伤。此外,CCl4模型可用于刺激在RNA合成15水平上的星细胞。这种肝毒素由腹腔内、门内、口腔和胃内途径16管理。

在此协议中,我们详细描述了CCl4诱导的ALI在大鼠通过奥胃管。该方法诱导健壮和可重复的ALI,可用于研究ALI的发病机制。通过血清谷氨酸-丙酮酶转氨酶(GPT)、谷胱甘肽转氨酶(GOT)酶和总胆红素(TB)的测量,以及通过血氧林和欧辛(H&E)染色肝组织进行明确的组织学诊断,监测肝病严重程度的确定。通过胃内访问接触 CCl4,可以采用实用、廉价、微创的方法,风险最小。

Protocol

这些实验是根据《赫尔辛基和东京宣言》的建议和欧洲共同体《实验动物使用准则》进行的。这些实验得到了内盖夫本-古里安大学动物护理委员会的批准。 注:CCl4模型已经生成并用于以前的研究17。协议时间表在表 1中演示。 1. 为实验程序准备大鼠 注:选择成年雄性斯普拉格道利大鼠体重300~350?…

Representative Results

与假操作对照(p < 0.001)相比,诱导 ALI(在较高CCl 4剂量下更多)后,结核病、GOT 和 GPT 水平显著增加 24小时(更多为较高 CCl4剂量)。基线的结核病、GOT 和 GPT 水平是正常的,与虚假操作的控制没有显著差异。在24小时时,所有三个介入组,1 mL/kg CCl4 (1, 1⁄2), 2.5 mL/kg CCl4 (3, 3+4) 和 5 mL/kg CCl4 (4, 4, 4+5.75), 具有明显高于假操作…

Discussion

在此协议中,CCl4用作肝脏毒素,诱导大鼠体内的ALI。ALI的特点是肝胆痛的丧失以及肝脏代谢和合成功能的后续调节。药物、病毒、毒素、自身免疫性疾病、代谢疾病和血管疾病都诱发肝细胞死亡,随后的炎症反应有助于ALI的发病机制。

对肝脏的最初侮辱导致细胞因子的产生,化学基质释放,以及随后炎症细胞渗入肝脏。用于 ALI 评估的三种常见测试的生物标志物是 GP…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢内盖夫大学索罗卡医学中心病理学系的伯莎·德尔加多在实验室和组织学分析方面的帮助。

Materials

22 G catheter BD Neoflon TM Becton Dickinson Infusion Therapy AB
4% buffered formaldehyde solution Sigma – Aldrich lab materials technologies
BD Microtainer SST TM Tubes Becton Dickinson and Company
Carbone tetrachloride Sigma – Aldrich lab materials technologies CAS 56-23-5
Isofluran, USP 100% Piramamal Critical Care, Inc
Olympus AU2700 Chemistry-Immuno Analyzer Olympus (MN, USA) Analysis of blood samples was done by the fluorescence method
Olympus BX 40 microscope Olympus
RAT Feeding Needles ORCHID SCIENTIFICS
SYRINGE SET 1 and 2 ml MEDI -PLUS Shandong Zibo Shanchuan Medical Instruments Co., Ltd

References

  1. Hoofnagle, J. H., Carithers, R. L., Shapiro, C., Ascher, N. Fulminant hepatic failure: Summary of a workshop. Hepatology. 21 (1), 240-252 (1995).
  2. Rakela, J., Lange, S. M., Ludwig, J., Baldus, W. P. Fulminant hepatitis: Mayo clinic experience with 34 cases. Mayo Clinic Proceedings. 60 (5), 289-292 (1985).
  3. Riordan, S. M., Williams, R. Treatment of hepatic encephalopathy. New England Journal of Medicine. 337, 473-479 (1997).
  4. Bernuau, J., Rueff, B., Benhamou, J. Fulminant and subfulminant liver failure: Definitions and causes. Seminars in Liver Disease. 6 (2), 97-106 (1986).
  5. Lidofsky, S. D. Liver transplantation for fulminant hepatic failure. Gastroenterology Clinics of North America. 22 (2), 257-269 (1993).
  6. Auzinger, G., Wendon, J. Intensive care management of acute liver failure. Current opinion in critical care. 14 (2), 179-188 (2008).
  7. Wu, Q., et al. Protection of regenerating liver after partial hepatectomy from carbon tetrachloride hepatotoxicity in rats: Roles of mitochondrial uncoupling protein 2 and ATP stores. Digestive Diseases and Sciences. 54 (9), 1918-1925 (2009).
  8. Tuñón, M. J., Alvarez, M., Culebras, J. M., González-Gallego, J. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World Journal of Gastroenterologyl. 15 (25), 3086-3098 (2009).
  9. van de Kerkhove, M. P., Hoekstra, R., van Gulik, T. M., Chamuleau, R. A. Large animal models of fulminant hepatic failure in artificial and bioartificial liver support research. Biomaterials. 25 (9), 1613-1625 (2004).
  10. Butterworth, R. F., et al. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver International. 29 (6), 783-788 (2009).
  11. Zhang, B., Gong, D., Mei, M. Protection of regenerating liver after partial hepatectomy from carbon tetrachloride hepatotoxicity in rats: Role of hepatic stimulator substance. Journal of Gastroenterology and Hepatology. 14 (10), 1010-1017 (1999).
  12. Ugazio, G., Danni, O., Milillo, P., Burdino, E., Congiu, A. M. Mechanism of protection against carbon tetrachloride toxicity. I. prevention of lethal effects by partial surgical hepatectomy. Drug and Chemical Toxicology. 5 (2), 115-124 (1982).
  13. Taniguchi, M., Takeuchi, T., Nakatsuka, R., Watanabe, T., Sato, K. Molecular process in acute liver injury and regeneration induced by carbon tetrachloride. Life Science. 75 (13), 1539-1549 (2004).
  14. Gordis, E. Lipid metabolites of carbon tetrachloride. Journal of Clinical Investigation. 48 (1), 203-209 (1969).
  15. Albrecht, J. Cerebral RNA synthesis in experimental hepatogenic encephalopathy. Journal of Neuroscience Research. 6 (4), 553-558 (1981).
  16. Terblanche, J., Hickman, R. Animal models of fulminant hepatic failure. Digestive Diseases and Sciences. 36 (6), 770-774 (1991).
  17. Gruenbaum, B. F., et al. Cell-free DNA as a potential marker to predict carbon tetrachloride-induced acute liver injury in rats. Hepatology International. 7 (2), 721-727 (2013).
  18. Juricek, J., et al. Analytical evaluation of the clinical chemistry analyzer Olympus AU2700 plus. Biochemia Medica. 20 (3), 334-340 (2010).
  19. Feldman, A. T., Wolfe, D. Tissue processing and hematoxylin and eosin staining. Methods in Molecular Biology. 1180, 31-43 (2014).
  20. Wang, T., et al. Protective effects of dehydrocavidine on carbon tetrachloride-induced acute hepatotoxicity in rats. Journal of Ethnopharmacology. 117 (2), 300-308 (2008).
  21. Ye, X., et al. Hepatoprotective effects of coptidis rhizoma aqueous extract on carbon tetrachloride-induced acute liver hepatotoxicity in rats. Journal of Ethnopharmacology. 124 (1), 130-136 (2009).
  22. Wills, P. J., Asha, V. V. Protective effect of lygodium flexuosum (L.) sw. extract against carbon tetrachloride-induced acute liver injury in rats. Journal of Ethnopharmacology. 108 (3), 320-326 (2006).
  23. Senior, J. R. Monitoring for hepatotoxicity: What is the predictive value of liver “function” tests. Clinical Pharmacology & Therapeutics. 85 (3), 331-334 (2009).
  24. Karmen, A. A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum. Journal of Clinical Investigation. 34 (1), 131-133 (1955).
  25. Hubner, G. Ultrastructural liver damage caused by direct action of carbon tetrachloride in vivo and in vitro. Virchows Archiv fur Pathologische Anatomie und Physiologie und fur Klinische Medizin. 339 (3), 187-197 (1965).
  26. Newsome, P. N., Plevris, J. N., Nelson, L. J., Hayes, P. C. Animal models of fulminant hepatic failure: A critical evaluation. Liver Transplantation. 6 (1), 21-31 (2000).
check_url/60695?article_type=t

Play Video

Cite This Article
Frank, D., Savir, S., Gruenbaum, B. F., Melamed, I., Grinshpun, J., Kuts, R., Knyazer, B., Zlotnik, A., Vinokur, M., Boyko, M. Inducing Acute Liver Injury in Rats via Carbon Tetrachloride (CCl4) Exposure Through an Orogastric Tube. J. Vis. Exp. (158), e60695, doi:10.3791/60695 (2020).

View Video