Summary

双电穿孔,以定时和空间分离的细胞群

Published: June 14, 2020
doi:

Summary

子宫电穿孔的双倍允许瞄准空间和时间分离的细胞群。该技术可用于在正常条件下使用荧光蛋白可视化这些细胞群之间的相互作用,而且在功能实验后也可用于干扰感兴趣的基因。

Abstract

在子宫电穿孔是一种体内DNA转移技术,广泛用于研究哺乳动物皮质成基的分子和细胞机制。此过程利用大脑心室,允许引入感兴趣的DNA,并使用一对电极引导遗传物质进入心室内衬的细胞,神经干细胞。这种方法允许研究人员标记所需的细胞和/或操作这些细胞中感兴趣的基因的表达。它有多种应用,包括针对神经元迁移、系系跟踪和斧头路径查找的测定。这种方法的一个重要特点是它的时间和区域控制,允许规避与胚胎杀伤性或缺乏特定的CRE驱动小鼠相关的潜在问题。这项技术的另一个相关方面是,它有助于减少涉及产生新的小鼠线的经济和时间限制,这在研究不同发育年龄时起源于大脑遥远区域的细胞类型之间的相互作用方面变得尤为重要。在这里,我们描述了一个双电镀策略,能够瞄准空间和时间分离的细胞群。通过这种方法,我们可以用选定的荧光蛋白标记不同位置的不同亚型细胞,以可视化它们,和/或者我们可以在适当的时候操纵这些不同细胞表达感兴趣的基因。这一策略增强了子宫电穿孔的潜力,并提供了一个强大的工具,用于研究迁移以建立密切接触的时空和空间分离的细胞群的行为,以及通过xxon投影进行远程相互作用,从而降低时间和经济成本。

Introduction

大脑皮层是一个非常复杂和复杂的组织结构。为了实现这种程度的组织,皮质投影神经元经历复杂的发育过程,需要其时间生成,迁移到皮质板的最终目的地,以及建立短和远程连接11,2。2长期以来,研究皮质成因的经典方法基于对感兴趣的基因的敲除或敲模模型的使用。然而,这种策略,特别是使用有条件的挖空小鼠,既费时又昂贵,有时在存在遗传冗余或缺乏具体的CRE驱动因素等方面提出了其他问题。试图解决这些问题的方法之一,现在被广泛用于研究皮质发育的方法之一是在子宫电穿孔33,4。4在子宫电穿孔是一种用于体细胞转变的技术,允许在体内瞄准神经干细胞及其后代。该方法可用于通过表达荧光蛋白55、66来标记细胞,用于体内基因操作(即功能测定的增益或丧失)7、8、9,8,用于在体外分离7电质皮质和培养细胞98,8、10。此外,在电体电穿孔中,允许对目标区域进行时间和区域控制。该技术具有多种应用,已广泛应用于研究神经元迁移、干细胞分裂、神经元连通性等学科88、9、11、12。9,11,12

目前的手稿描述了在子宫电穿孔中使用一种称为双质电穿孔的电穿孔变体,用于分析不同时间和空间起源的大脑皮层细胞的相互作用。这些研究在使用鼠型时完成极其复杂,因为它们需要组合使用几种转基因系。本文中描述的协议的一些应用包括研究相邻细胞之间的紧密相互作用,以及通过远程投影研究远程细胞之间的相互作用。该方法要求在子宫电穿孔手术中进行两次独立的手术,在时间和空间上分离,以针对感兴趣的不同细胞群。这种方法的优点是有可能利用野生动物操纵一种或两种神经元的基因功能。此外,这些功能实验可以结合细胞质或膜标记荧光蛋白的表达相结合,以可视化靶细胞(包括树突和斧头)的精细形态,并分析与对照组相比细胞相互作用的可能差异(即仅标记荧光蛋白的细胞)。

此处划定的协议侧重于研究新皮质内的细胞相互作用,但这一策略也可用于研究与可用于子宫电穿孔的外皮质区域的相互作用,如亚皮质或丘脑13、14,14或其他结构中的细胞-细胞相互作用,如小脑15。不同区域的瞄准基于电极的方向和注入DNA的心室(横向、第三或第四)。通过此处描述的策略,我们可以标记大量细胞,这对于评估功能实验中连接/内伸的一般变化非常有用。然而,为了研究连接性的变化,人们可以使用子宫电穿孔的修改版本来获得更稀疏的标签和识别单细胞16。总之,双电镀是一种通用方法,它允许瞄准时空分离的细胞群,并在控制条件下或与功能实验相结合,详细研究它们的相互作用,大大降低了时间和经济成本。

Protocol

此处所述的程序已获得负责实验、瓦伦西亚大学动物福利和农业学院道德委员会的批准, 巴伦西亚纳大学(巴伦西亚纳大学)的德萨罗罗罗农村,《特兰西纳大学》和《欧洲实验室动物科学委员会》的准则,遵守西班牙立法第53/23/2013号《真实声明》以及欧洲议会和理事会第2010/63/欧盟指令中审查的国际实验室动物科学理事会(ICLAS)的指导方针。 注:该协议涉及两个不同的?…

Representative Results

相邻细胞之间的相互作用起源于远端位置和不同时间:卡贾尔-Retzius细胞(CR细胞)和早期迁移皮质投影神经元(策略A) CR细胞和早期皮质投影神经元的相互作用先前被描述为有必要通过nectin和地籍粘附分子使用双电穿孔策略8来调节肌质易位。CR细胞起源于皮质边缘的神经上皮,并切向迁移,以填充皮层最表面的部分,边缘区域17,18,19,而皮?…

Discussion

研究大脑皮层等细胞密度高的区域体内细胞相互作用是一项复杂的任务。传统方法,包括使用抗体来标记神经衰弱是不适合的,因为缺乏针对不同细胞群的特定标记。使用转基因鼠模型(特定细胞类型表示荧光蛋白)有助于可视化神经元过程,但这取决于此类模型的可用性。当试图想象两种特定细胞类型之间在感兴趣的基因扰动时相互作用的可能差异时,这项任务就更加复杂了,因为它涉及使用?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢克里斯蒂娜·安德烈斯·卡内尔和瓦伦西亚大学动物护理设施的成员提供技术援助。我们还要感谢伊莎贝尔·法里亚斯和萨克拉门托·费伦的试剂,并与我们分享他们的设备。I.M.W由瓦伦西亚大学(GJIDI/2018/A/221)的加兰迪亚·尤韦尼尔合同供资,D.dA.D由伊斯兰大学(国际大学)部长资助。”FPI-PRE2018-086150″。C.Gil-Sanz 持有西班牙法语省法语省(MICINN) 的拉蒙和卡哈尔赠款(RYC-2015-19058)。这项工作资助了RYC-2015-19058和SAF2017-82880-R(MICINN)。

Materials

Ampicillin sodium salt Sigma-Aldrich A9518-25G
Aspirator tube Sigma-Aldrich A5177-5EA
Baby-mixter hemostat (perfusion) Fine Science Tools (FST) 13013-14
Borosilicate glass capillary WPI 1B100-6
Buprenorphine (BUPREX 0,3 mg/ml) Rb Pharmaceuticals Limited 921425
CAG-BFP plasmid Kindly provided by U.Müller Lab
CAG-EGFP plasmid Kindly provided by U.Müller Lab
CAG-mCherry plasmid Kindly provided by U.Müller Lab
CAG-mtdTomato-2A-nGFP plasmid Kindly provided by U.Müller Lab
Confocal microscope Olympus FV10i
Cotton Swabs BFHCVDF
Cyanoacrylate glue B. Braun Surgical 1050044
Dissecting scope Zeiss stemi 305
Dumont Forceps #5 Fine Forceps Fine Science Tools (FST) 11254-20
ECM830 Square Wave Electroporator BTX 45-0052
Electric Razor Oster 76998
Endotoxin-free TE buffer QIAGEN 1018499
Ethanol wipes BFHCVDF
Extra Fine Graefe Forceps Fine Science Tools (FST) 11150-10
Eye ointment Alcon 682542.6
Fast Green dye Sigma-Aldrich F7252-5G
Fine Scissors Fine Science Tools (FST) 14069-09
Fluorescence LEDs CoolLED pE-300-W
Genopure Plasmid Maxi Kit Roche 3143422001
Halsted-Mosquito Hemostats (suture) Fine Science Tools (FST) 91308-12
Heating Pad UFESA AL5514
Inverted epifluorescence microscope Nikon Eclipse TE2000-S
Iodine wipes Lorsoul
Isofluorane vaporizer Flow-Meter A15B5001
Isoflurane Karizoo 586259
Ketamine (Anastemine) Fatro Ibérica SL 583889-2
Kimtech precision wipes Kimberly-Clark 7252
LB (Lennox) Agar GEN Labkem AGLB-00P-500
LB (Lennox) broth GEN Labkem LBBR-00P-500
Low-melting point agarose Fisher Scientific BP165-25
Medetomidine (Sedator) Dechra 573749.2
Microscope coverslips Menel-Gläser 15747592
Microscope Slides Labbox SLIB-F10-050
Mounting medium Electron Microscopy Sciences 17984-25
Mutiwell plates (24) SPL Life Sciences 32024
Mutiwell plates (48) SPL Life Sciences 32048
NaCl (for saline solution) Fisher Scientific 10112640
Needle 25 G (BD Microlance 3) Becton, Dickinson and Company 300600
Orbital incubator S150 Stuart Scientific 5133
P Selecta Incubator J. P. Selecta, s.a. 0485472
Paraformaldehyde PanReac AppliedChem A3813
Penicillin-Streptomycin Sigma -Aldrich P4333
Peristaltic perfusion pump Cole-Parmer EW-07522-30
Platinum Tweezertrode, 5 mm Diameter Btx 45-0489
Reflex Skin Closure System – 7mm Clips, box of 100 AgnThos 203-1000
Reflex Skin Closure System – Clip Applyer, 7mm AgnThos 204-1000
Ring Forceps Fine Science Tools (FST) 11103-09
Sodium azide PanReac AppliedChem 122712-1608
Surgical absorbent pad (steryle) HK Surgical PD-M
Suture (Surgicryl PGA 6-0) SMI Suture Materials BYD11071512
Syringe 1ml (BD plastipak) Becton, Dickinson and Company 303172
Tissue Culture Dish 100 x 20 mm Falcon 353003
Vertical Micropipette Puller Sutter Instrument Co P-30
Vertical microscope Nikon Eclipse Ni
Vibratome Leica VT1200S

References

  1. Popovitchenko, T., Rasin, M. R. Transcriptional and post-transcriptional mechanisms of the development of neocortical lamination. Frontiers in Neuroanatomy. 11, 102 (2017).
  2. Mukhtar, T., Taylor, V. Untangling Cortical Complexity During Development. Journal of Experimental Neuroscience. 12, (2018).
  3. Saito, T., Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Developmental Biology. 240, 237-246 (2001).
  4. Tabata, H., Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: Visualization of neuronal migration in the developing cortex. Neuroscience. 103, 865-872 (2001).
  5. Shimogori, T., Ogawa, M. Gene application with in utero electroporation in mouse embryonic brain. Development, Growth & Differentiation. 50, 499-506 (2008).
  6. Tabata, H., Nakajima, K. Labeling embryonic mouse central nervous system cells by in utero electroporation. Development, Growth & Differentiation. 50, 507-511 (2008).
  7. Franco, S. J., Martinez-Garay, I., Gil-Sanz, C., Harkins-Perry, S. R., Müller, U. Reelin Regulates Cadherin Function via Dab1/Rap1 to Control Neuronal Migration and Lamination in the Neocortex. Neuron. 69, 482-497 (2011).
  8. Gil-Sanz, C., et al. Cajal-Retzius cells instruct neuronal migration by coincidence signaling between secreted and contact-dependent guidance cues. Neuron. 79, 461-477 (2013).
  9. Martinez-Garay, I., et al. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex. Development. 143, 2121-2134 (2016).
  10. Popovitchenko, T., et al. The RNA binding protein HuR determines the differential translation of autism-associated FoxP subfamily members in the developing neocortex. Scientific Reports. 6, (2016).
  11. Bultje, R. S., et al. Mammalian Par3 Regulates Progenitor Cell Asymmetric Division via Notch Signaling in the Developing Neocortex. Neuron. 63, 189-202 (2009).
  12. Rodríguez-Tornos, F. M., et al. Cux1 Enables Interhemispheric Connections of Layer II/III Neurons by Regulating Kv1-Dependent Firing. Neuron. 89, 494-506 (2016).
  13. Borrell, V., Yoshimura, Y., Callaway, E. M. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. Journal of Neuroscience Methods. 143, 151-158 (2005).
  14. Mire, E., et al. Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth. Nature Neuroscience. 15, 1134-1143 (2012).
  15. Kawauchi, D., Saito, T. Transcriptional cascade from Math1 to Mbh1 and Mbh2 is required for cerebellar granule cell differentiation. Developmental Biology. 322, 345-354 (2008).
  16. Briz, C. G., Navarrete, M., Esteban, J. A., Nieto, M. In utero electroporation approaches to study the excitability of neuronal subpopulations and single-cell connectivity. Journal of Visualized Experiments. 120, e55139 (2017).
  17. Bielle, F., et al. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neuroscience. 8, 1002-1012 (2005).
  18. Meyer, G., Perez-Garcia, C. G., Abraham, H., Caput, D. Expression of p73 and Reelin in the Developing Human Cortex. Journal of Neuroscience. 22, 4973-4986 (2002).
  19. Takiguchi-Hayashi, K., et al. Generation of Reelin-Positive Marginal Zone Cells from the Caudomedial Wall of Telencephalic Vesicles. Journal of Neuroscience. 24, 2286-2295 (2004).
  20. Berry, M., Rogers, A. W. The migration of neuroblasts in the developing cerebral cortex. Journal of Anatomy. 99, 691-709 (1965).
  21. Alcántara, S., et al. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. Journal of Neuroscience. 18, 7779-7799 (1998).
  22. Yoshida, M., Assimacopoulos, S., Jones, K. R., Grove, E. A. Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development. 133, 537-545 (2006).
  23. Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. L., Pearlman, A. L. Two modes of radial migration in early development of the cerebral cortex. Nature Neuroscience. 4, 143-150 (2001).
  24. Fame, R. M., MacDonald, J. L., Macklis, J. D. Development, specification, and diversity of callosal projection neurons. Trends in Neurosciences. 34, 41-50 (2011).
  25. Thomson, A. M., Bannister, A. P. Interlaminar Connections in the Neocortex. Cerebral Cortex. 13, 5-14 (2003).
  26. Zarrinpar, A., Callaway, E. M. Local connections to specific types of layer 6 neurons in the rat visual cortex. Journal of Neurophysiology. 95, 1751-1761 (2006).
  27. Chovsepian, A., Empl, L., Correa, D., Bareyre, F. M. Heterotopic Transcallosal Projections Are Present throughout the Mouse Cortex. Frontiers in Cellular Neuroscience. 11, 36 (2017).
  28. DeFelipe, J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Frontiers in Neuroanatomy. 5, 29 (2011).
  29. Velmeshev, D., et al. Single-cell genomics identifies cell type–specific molecular changes in autism. Science. 364, 685-689 (2019).
check_url/61046?article_type=t

Play Video

Cite This Article
Mateos-White, I., Fabra-Beser, J., de Agustín-Durán, D., Gil-Sanz, C. Double In Utero Electroporation to Target Temporally and Spatially Separated Cell Populations. J. Vis. Exp. (160), e61046, doi:10.3791/61046 (2020).

View Video