Summary

锰氧化物纳米粒子合成锰(II)乙酰酸盐的热分解

Published: June 18, 2020
doi:

Summary

该协议详细说明了锰氧化物(MnO)纳米粒子的一个简单、单锅合成,在甲胺和二苯醚存在的情况下,对锰(II)乙酰乙酰酸盐进行热分解。MnO 纳米粒子已用于各种应用,包括磁共振成像、生物感应、催化、电池和废水处理。

Abstract

在生物医学应用中,金属氧化物纳米粒子,如氧化铁和氧化锰(MnO),已被用作磁共振成像(MRI)的生物传感器和对比剂。虽然氧化铁纳米粒子在典型的实验时间范围内为 MRI 提供恒定的负面对比度,但 MnO 通过将 MnO 溶解到 Mn 在细胞内膜内的低 pH 值来”打开”MRI 对比度,在 MRI 上生成可切换的正对比度。该协议描述了由乙酰胺和二苯醚中锰(II)乙酰酸盐的热分解形成的MnO纳米粒子的一罐合成。虽然运行 MnO 纳米粒子的合成很简单,但如果没有提供详细说明,则初始实验设置可能难以重现。因此,首先对玻璃器皿和管组件进行了彻底描述,以便其他调查人员能够轻松重现设置。合成方法集成了温度控制器,以实现对所需温度剖面的自动化和精确操作,这将影响由此产生的纳米粒子尺寸和化学成分。热分解协议可以很容易地适应产生其他金属氧化物纳米粒子(如氧化铁),并包括替代有机溶剂和稳定剂(如油酸)。此外,有机溶剂与稳定剂的比例可以改变,以进一步影响纳米粒子的特性,如此所示。合成MnO纳米粒子分别通过透射电子显微镜、X射线衍射和四强变换红外光谱,分别具有形态、尺寸、体积组成和表面组成的特点。此方法合成的 MnO 纳米粒子具有疏水性,必须通过配体交换、聚合物封装或脂质封顶进一步操作,以结合亲水性组与生物流体和组织进行相互作用。

Introduction

,金属氧化物纳米粒子具有磁性、电能和催化性,已应用于,,,生物成像1、2、3、,2传感器技术4、5、催化36、7、8、储能9、净水10。578在生物医学领域,氧化铁纳米粒子和氧化锰(MnO)纳米粒子已被证明作为磁共振成像(MRI)1,2,中的对比剂具有实用价值。氧化铁纳米粒子在T2* MRI上产生强大的负对比度,其功能足以在体内11、12、13,12显示单个标记细胞;然而,负MRI信号不能调制,在整个典型实验期间保持”ON”。由于肝脏、骨髓、血液和脾脏中存在内源性铁,氧化铁纳米粒子产生的负对比度可能难以解释。另一方面,MnO纳米粒子对pH的下降有反应。一旦纳米粒子在目标细胞的低pH内分体和细胞体内化,,,癌细胞14、15、16、17、18、19,15,16等细胞内化,MnO纳米粒子的MRI信号就可以从”OFF”17,过渡到“ON”。在低pH值下从MnO溶解到Mn2+对T1 MRI产生的正对比是无可置疑的,只需在恶性肿瘤内的目标位点照明,就可以提高癌症检测特异性。控制纳米粒子的大小、形态和成分对于实现来自MnO纳米粒子的最大MRI信号至关重要。本文介绍了如何使用热分解法合成和描述MnO纳米粒子,并注意通过改变合成过程中变量来微调纳米粒子特性的不同策略。该协议可以很容易地修改,以产生其他磁性纳米粒子,如氧化铁纳米粒子。

MnO纳米粒子由多种技术产生,包括热分解20、21、22、23、24、25、,24,25水力/解热20,21,22,2326、27、28、29、去角质 第26,27,28,293030、31、32、33、34、31,32,33,34高甘酸盐,减少35、36、37、38、,36,37,38吸附氧化39、40、41、42。39,40,41,42热分解是最常用的技术,它涉及溶解锰前体,有机溶剂,和稳定剂在高温下(180-360°C)在惰性气态大气中形成MnO纳米粒子43。在所有这些技术中,热分解是产生各种纯相(MnO、Mn3O4和 Mn2O3)的纯相纳米晶体的优越方法,其大小分布较窄。通过改变反应时间44、45、46、温度,45,,,,,44、47、48、49、,47反应物类型48/比率44,494620、45、47、48、50和惰性气体,5047,48204547、48、50,可以严格控制纳米粒子的大小、形态和成分,从而突出了其多功能性。47,48该方法的主要局限性是要求高温、无氧大气和合成纳米粒子的疏水涂层,需要用聚合物、脂质或其他配体进一步改性,以提高生物应用的溶解度14、51、52、53。14,51,52,53

除了热分解,水力/解热法是唯一可以产生各种MnO相的其它技术,包括MnO、Mn3O4和MnO2;所有其他策略仅形成 MnO2产品。在水力/解热合成过程中,前体如Mn(II)石54、55Mn(II)醋酸盐27在几个小时内被加热到120-200°C之间,以实现尺寸狭窄的纳米粒子;然而,需要专门的反应容器,反应是在高压下进行的。相比之下,去角质策略涉及处理分层或散装材料,以促进分离为二维单层。它的主要优点是生产MnO2纳米片,但合成过程需要几天时间,因此表的大小难以控制。或者,高锰酸盐(如KMnO4)可以与还原剂(如油酸56、57、,57氧化石墨烯58或聚(盐酸乙酰胺)59等反应,从而产生MnO2纳米粒子。使用KMnO4有助于在水性条件下几分钟到几小时在室温下形成纳米粒子。不幸的是,快速合成和纳米粒子的生长使得精细控制由此产生的纳米粒子尺寸变得具有挑战性。MnO2纳米粒子也可以使用吸附氧化合成,使 Mn2+离子在基本条件下通过氧气被吸附并氧化到 MnO2。该方法在水介质中,在室温下,在数小时内产生体积小、分布较窄的MnO2纳米粒子;然而,Mn2+离子和碱条件的要求限制了其广泛应用43。

在所讨论的MnO纳米粒子合成方法中,热分解是产生不同单分散的纯相纳米晶体的最通用方法,无需专门的合成容器即可控制纳米粒子的大小、形状和组成。在这份手稿中,我们描述了如何在280°C时用锰(II)乙酰乙酰酸酯(Mn(II)ACAC作为Mn2+ 离子的来源,以油胺(OA)作为还原剂和稳定剂,以及二苯醚(DE)作为氮气下的溶剂,在280°C下通过热分解合成MnO纳米粒子。详细介绍了纳米粒子合成的玻璃器皿和管材设置。该技术的一个优点是包括温度控制器、热电偶探头和加热层,以便精确控制每个温度下的加热速率、峰值温度和反应时间,以微调纳米粒子的大小和成分。在这里,我们展示如何通过改变OA与DE的比例来操纵纳米粒子尺寸。此外,我们演示了如何使用透射电子显微镜(TEM)、X射线衍射(XRD)和四位一流变换红外光谱(FTIR)分别准备纳米粒子样品并测量纳米粒子尺寸、体积组成和表面成分。包括有关如何分析每个仪器收集的图像和光谱的进一步指导。要产生均匀形状的MnO纳米粒子,必须存在稳定剂和足够的氮流;XRD 和 TEM 结果显示为在没有 OA 和低氮流下形成的不需要的产品。在”讨论”部分,我们重点介绍协议中的关键步骤、确定成功纳米粒子合成的指标、用于修改纳米粒子特性的分解协议的进一步变化(大小、形态和组成)、方法的故障排除和局限性,以及 MnO 纳米粒子作为生物医学成像的对比剂的应用。

Protocol

1. 玻璃器皿和油管组件 – 仅首次执行 注 :图1 显示了带编号管连接的MnO纳米粒子合成的实验装置。 图 S1 显示了与标记的主玻璃器皿组件相同的设置。如果耐化学性管材与玻璃连接尺寸不匹配,则先用一小块小管盖住玻璃连接,然后添加耐化学性管材,使连接舒适。 使用经批准的表带约束,将无气氮罐固定到靠近化学烟?…

Representative Results

为了确认合成成功,应测定MnO纳米粒子的大小和形态(TEM)、体积成分(XRD)和表面成分(FTIR)。 图2 显示了使用油胺(OA,稳定剂)与二苯醚(DE,有机溶剂)的减小比合成的MnO纳米粒子的代表性TEM图像:60:0、50:10、40:20、30:30、20:40、10:50。理想的TEM图像由单个纳米粒子组成(如图2所示为暗圆八 角形),具有最小的重叠。使用 ImageJ 中的线?…

Discussion

本文所述协议描述了使用Mn(II)ACAC、DE和OA的MnO纳米粒子的一罐简单合成。Mn(II) ACAC 用作起始材料,为 MnO 纳米粒子的形成提供 Mn的来源。起动材料可以很容易地替代,使生产其他金属氧化物纳米粒子。例如,当应用铁(III)ACAC时,可以使用描述的相同纳米粒子合成设备和协议63生成Fe3 O4纳米粒子4DE是热分解反应的理想有机溶剂,因为它的高沸点?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了WVU化学和生物医学工程部启动基金(M.F.B.)的支持。作者感谢马塞拉·雷迪戈洛博士与TEM一起指导纳米粒子的网格制备和图像捕获,王强博士为评估XRD和FTIR光谱提供支持,约翰·宗德洛博士和亨特·斯诺德利博士为编程和将温度控制器集成到纳米粒子合成协议中,詹姆斯·霍尔协助组装纳米粒子合成装置,亚历山大·普舍尔和詹娜·维托帮助从TEM图像量化MnO纳米粒子直径,以及WVU共享研究设施,用于TEM、XRD和FTIR。

Materials

Chemicals and Gases
Benzyl ether (DE) Acros Organics AC14840-0010 Concentration: 99%, 1 L
Drierite W. A. Hammond Drierite Co. LTD 23001 Drierite 8 mesh, 1 lb
Ethanol Decon Laboratories  2701 200 proof, 4 x 3.7 L
Hexane Macron Fine Chemicals 5189-08 Concentration:  ≥98.5%, 4 L
Hydrochloric acid VWR BDH3030-2.5LPC Concentration: 36.5 – 38.0 % ACS, 2.5 L
Manganese (II) acetyl acetonate (Mn(II)ACAC) Sigma Aldrich 245763-100G 100 g
Nitrogen gas tank Airgas NI R300 Research 5.7 grade nitrogen, size 300 cylinder
Nitrogen regulator Airgas Y11244D580-AG Single stage brass 0-100 psi analytical cylinder regulator CGA-580 with needle outlet
Oleylamine (OA) Sigma Aldrich O7805-500G Concentration: 70%, technical grade, 500 g
Silicone oil Beantown Chemical 221590-100G 100 g
Equipment
Centrifuge Beckman-Coulter Avanti J-E JA-20 fixed-angle aluminum rotor, 8 x 50 mL, 48,400 x g
Hemisphere mantle Ace Glass Inc. 12035-17 115 V, 270 W, 500 mL, temperature up to 450 °C
Hot plate stirrer VWR 97042-642 120 V, 1000 W, 8.3 A, ceramic top
Temperature controller Yokogawa Electric Corporation UP351
Temperature probe Omega KMQXL-040G-12 Immersion probe, temperature up to 1335 °C
Vacuum oven Fisher Scientific 282A 120 V, 1800 W, temperature up to 280 °C
Vortex mixer Fisher Scientific 02-215-365 120 V, 50/60 Hz, 150 W
Water bath sonicator Fisher Scientific FS30H Ultrasonic power 130 W, 3.7 L tank
Tools and Materials
Dumont tweezer Electron Microscopy Sciences 72703D Style 5/45, Dumoxel, 109 mm, for picking up TEM grids
Dumont reverse tweezer Ted Pella 5748 Style N2a, 118 mm, NM-SS, self-closing, holding TEM grids in place for sample preparation
Mortar and pestle Amazon BS0007 BIPEE agate mortar and pestle, 70 X 60 X 15 mm labware
Nalgene™ Oak Ridge tubes ThermoFisher Scientific 3139-0050 Polypropylene copolymer, 50,000 x g, 50 mL, pack of 10
Scintillation vials Fisher Scientific 03-337-4 20 mL vials with white caps, case of 500
TEM grids Ted Pella 01813-F Carbon Type-B, 300 mesh, copper, pack of 50
Glassware Setup
4-neck round bottom flask Chemglass Life Sciences CG-1534-01 24/40 joint, 500 mL, #7 chem thread for thermometers
6-port vacuum manifold Chemglass Life Sciences CG-4430-02 480 nm, 6 ports, 4 mm PTFE stopcocks
Adapter Chemglass Life Sciences CG-1014-01 24/40 inner joint, 90°
Condenser Chemglass Life Sciences CG-1216-03 24/40 joint, 365 mm, 250 mm jacket length
Drierite 26800 drying column Cole-Parmer  EW-07193-00 200 L/hr, 90 psi
Funnel Chemglass Life Sciences CG-1720-L-02 24/40 joint, 100 powder funnel, 195 mm OAL
Interlocked worm gear hose clamp Grainger 16P292 1/2" wide stainless steel clamp, 3/8" to 7/8" diameter, to secure condenser tubing, 10 pack 
Keck clips Kemtech America Inc CS002440 24/40 joint
Metal claw clamp Fisher Scientific 05-769-7Q 22cm, three-prong extension clamps
Metal claw clamp holder Fisher Scientific 05-754Q Clamp regular holder
Mineral oil bubbler Kemtech America Inc B257040 185 mm
Rotovap trap Chemglass Life Sciences CG-1319-02 24/40 joints, 100 mL, self washing rotary evaporator
Rubber stopper Chemglass Life Sciences CG-3022-98 24/40 joints, red rubber
Tubing for air/water  McMaster-Carr 6516T21 Clear Tygon PVC for air/water, B-44-3, 1/4" ID, 1/16" wall, 25 ft
Tubing for air/water  McMaster-Carr 6516T26 Clear Tygon PVC for air/water, B-44-3, 3/8" ID, 1/16" wall, 25 ft
Tubing for chemicals McMaster-Carr 5155T34 Clear Tygon PVC for chemicals, E-3603, 3/8" ID, 1/16" wall, 50 ft
Analysis Programs
XRD analysis program Malvern Panalytical N/A X'Pert HighScore Plus
FTIR analysis program Varian, Inc. N/A Varian Resolutions Pro

References

  1. Felton, C., et al. Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metabolism Reviews. 46 (2), 142-154 (2014).
  2. Hsu, B. Y. W., et al. Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications. RSC Advances. 6 (51), 45462-45474 (2019).
  3. Wierzbinski, K. R., et al. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Scientific Reports. 8 (1), 1-17 (2018).
  4. Vukojević, V., et al. Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. Journal of Electroanalytical Chemistry. 823, 610-616 (2018).
  5. George, J. M., Antony, A., Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta. 185 (7), 358 (2018).
  6. Fei, J., et al. Tuning the Synthesis of Manganese Oxides Nanoparticles for Efficient Oxidation of Benzyl Alcohol. Nanoscale Research Letters. 12, (2017).
  7. Le, T. H., Ngo, T. H. A., Doan, V. T., Nguyen, L. M. T., Le, M. C. Preparation of Manganese Dioxide Nanoparticles on Laterite for Methylene Blue Degradation. Journal of Chemistry. 2019, 1602752 (2019).
  8. Kuo, C. H., et al. Robust Mesoporous Manganese Oxide Catalysts for Water Oxidation. ACS Catalysis. 5 (3), 1693-1699 (2015).
  9. Farzana, R., Rajarao, R., Hassan, K., Behera, P. R., Sahajwalla, V. Thermal nanosizing: Novel route to synthesize manganese oxide and zinc oxide nanoparticles simultaneously from spent Zn-C battery. Journal of Cleaner Production. 196, 478-488 (2018).
  10. Elbasuney, S., Elsayed, M. A., Mostafa, S. F., Khalil, W. F. MnO2 Nanoparticles Supported on Porous Al2O3 Substrate for Wastewater Treatment: Synergy of Adsorption, Oxidation, and Photocatalysis. Journal of Inorganic and Organometallic Polymers and Materials. , (2019).
  11. Shapiro, E. M., et al. MRI detection of single particles for cellular imaging. Proceedings of the National Academy of Sciences. 101 (30), 10901-10906 (2004).
  12. Shapiro, E. M., Skrtic, S., Koretsky, A. P. Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magnetic Resonance in Medicine. 53 (2), 329-338 (2005).
  13. Bennewitz, M. F., Tang, K. S., Markakis, E. A., Shapiro, E. M. Specific chemotaxis of magnetically labeled mesenchymal stem cells: implications for MRI of glioma. Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging. 14 (6), 676-687 (2012).
  14. Bennewitz, M. F., et al. Biocompatible and pH-Sensitive PLGA Encapsulated MnO Nanocrystals for Molecular and Cellular MRI. ACS Nano. 5 (5), 3438-3446 (2011).
  15. Chen, Y., et al. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials. 33 (29), 7126-7137 (2012).
  16. Park, M., et al. Large-Scale Synthesis of Ultrathin Manganese Oxide Nanoplates and Their Applications to T1 MRI Contrast Agents. Chemistry of Materials. 23 (14), 3318-3324 (2011).
  17. Duan, B., et al. Core-Shell Structurized Fe3O4@C@MnO2 Nanoparticles as pH Responsive T1-T2* Dual-Modal Contrast Agents for Tumor Diagnosis. ACS Biomaterials Science & Engineering. 4 (8), 3047-3054 (2018).
  18. Hao, Y., et al. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application. Nanotechnology. 27 (2), 025101 (2015).
  19. Shi, Y., Guenneau, F., Wang, X., Hélary, C., Coradin, T. MnO2-gated Nanoplatforms with Targeted Controlled Drug Release and Contrast-Enhanced MRI Properties: from 2D Cell Culture to 3D Biomimetic Hydrogels. Nanotheranostics. 2 (4), 403-416 (2018).
  20. Zhang, H., et al. Revisiting the coordination chemistry for preparing manganese oxide nanocrystals in the presence of oleylamine and oleic acid. Nanoscale. 6 (11), 5918 (2014).
  21. McDonagh, B. H., et al. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. Small. 12 (3), 301-306 (2016).
  22. Ding, X., et al. Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chemical Science. 7 (11), 6695-6700 (2016).
  23. Wei, R., et al. Versatile Octapod-Shaped Hollow Porous Manganese(II) Oxide Nanoplatform for Real-Time Visualization of Cargo Delivery. Nano Letters. 19 (8), 5394-5402 (2019).
  24. Na, H. B., et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angewandte Chemie (International Ed. in English). 46 (28), 5397-5401 (2007).
  25. Rockenberger, J., Scher, E. C., Alivisatos, A. P. A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides. Journal of the American Chemical Society. 121 (49), 11595-11596 (1999).
  26. Han, C., et al. Synthesis of a multifunctional manganese(II)-carbon dots hybrid and its application as an efficient magnetic-fluorescent imaging probe for ovarian cancer cell imaging. Journal of Materials Chemistry B. 4 (35), 5798-5802 (2016).
  27. Wang, A., et al. Redox-mediated dissolution of paramagnetic nanolids to achieve a smart theranostic system. Nanoscale. 6 (10), 5270-5278 (2014).
  28. Jia, Q., et al. A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2-Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials. 30 (13), 1706090 (2018).
  29. Yang, B., et al. A three dimensional Pt nanodendrite/graphene/MnO 2 nanoflower modified electrode for the sensitive and selective detection of dopamine. Journal of Materials Chemistry B. 3 (37), 7440-7448 (2015).
  30. Li, J., Li, D., Yuan, R., Xiang, Y. Biodegradable MnO2 Nanosheet-Mediated Signal Amplification in Living Cells Enables Sensitive Detection of Down-Regulated Intracellular MicroRNA. ACS Applied Materials & Interfaces. 9 (7), 5717-5724 (2017).
  31. Fan, H., et al. A Smart DNAzyme-MnO2 Nanosystem for Efficient Gene Silencing. Angewandte Chemie International Edition. 54 (16), 4801-4805 (2015).
  32. Zhang, Y., et al. A real-time fluorescence turn-on assay for acetylcholinesterase activity based on the controlled release of a perylene probe from MnO 2 nanosheets. Journal of Materials Chemistry C. 5 (19), 4691-4694 (2017).
  33. Meng, H. M., et al. Multiple Functional Nanoprobe for Contrast-Enhanced Bimodal Cellular Imaging and Targeted Therapy. Analytical Chemistry. 87 (8), 4448-4454 (2015).
  34. Zhao, Z., et al. Activatable Fluorescence/MRI Bimodal Platform for Tumor Cell Imaging via MnO2 Nanosheet-Aptamer Nanoprobe. Journal of the American Chemical Society. 136 (32), 11220-11223 (2014).
  35. Chen, J. L., et al. A glucose-activatable trimodal glucometer self-assembled from glucose oxidase and MnO 2 nanosheets for diabetes monitoring. Journal of Materials Chemistry B. 5 (27), 5336-5344 (2017).
  36. Yang, G., et al. Hollow MnO 2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nature Communications. 8 (1), 1-13 (2017).
  37. Wu, Y., et al. Versatile in situ synthesis of MnO2 nanolayers on upconversion nanoparticles and their application in activatable fluorescence and MRI imaging. Chemical Science. 9 (24), 5427-5434 (2018).
  38. Jing, X., et al. Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. Nanoscale. 11 (33), 15508-15518 (2019).
  39. Peng, Y. K., et al. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents. Nanotechnology. 29 (1), 015102 (2018).
  40. Ren, S., et al. Ternary-Responsive Drug Delivery with Activatable Dual Mode Contrast-Enhanced in vivo Imaging. ACS Applied Materials & Interfaces. 10 (38), 31947-31958 (2018).
  41. Zhen, W., et al. Multienzyme-Mimicking Nanocomposite for Tumor Phototheranostics and Normal Cell Protection. ChemNanoMat. 5 (1), 101-109 (2019).
  42. Tang, W., et al. Wet/Sono-Chemical Synthesis of Enzymatic Two-Dimensional MnO2 Nanosheets for Synergistic Catalysis-Enhanced Phototheranostics. Advanced Materials. 31 (19), 1900401 (2019).
  43. Ding, B., Zheng, P., Ma, P., Lin, J. Manganese Oxide Nanomaterials: Synthesis, Properties, and Theranostic Applications. Advanced Materials. , 1905823 (2020).
  44. Schladt, T. D., Graf, T., Tremel, W. Synthesis and Characterization of Monodisperse Manganese Oxide Nanoparticles-Evaluation of the Nucleation and Growth Mechanism. Chemistry of Materials. 21 (14), 3183-3190 (2009).
  45. Yin, M., O’Brien, S. Synthesis of Monodisperse Nanocrystals of Manganese Oxides. Journal of the American Chemical Society. 125 (34), 10180-10181 (2003).
  46. Chen, Y., Johnson, E., Peng, X. Formation of Monodisperse and Shape-Controlled MnO Nanocrystals in Non-Injection Synthesis: Self-Focusing via Ripening. Journal of the American Chemical Society. 129 (35), 10937-10947 (2007).
  47. Nolis, G. M., Bolotnikov, J. M., Cabana, J. Control of Size and Composition of Colloidal Nanocrystals of Manganese Oxide. Inorganic Chemistry. 57 (20), 12900-12907 (2018).
  48. Seo, W. S., et al. Size-Dependent Magnetic Properties of Colloidal Mn3O4 and MnO Nanoparticles. Angewandte Chemie International Edition. 43 (9), 1115-1117 (2004).
  49. Douglas, F. J., et al. Formation of octapod MnO nanoparticles with enhanced magnetic properties through kinetically-controlled thermal decomposition of polynuclear manganese complexes. Nanoscale. 6 (1), 172-176 (2013).
  50. Salazar-Alvarez, G., Sort, J., Suriñach, S., Baró, M. D., Nogués, J. Synthesis and Size-Dependent Exchange Bias in Inverted Core-Shell MnO|Mn 3 O 4 Nanoparticles. Journal of the American Chemical Society. 129 (29), 9102-9108 (2007).
  51. Zhang, T., Ge, J., Hu, Y., Yin, Y. A General Approach for Transferring Hydrophobic Nanocrystals into Water. Nano Letters. 7 (10), 3203-3207 (2007).
  52. Chhour, P., et al. Nanodisco balls: control over surface versus core loading of diagnostically active nanocrystals into polymer nanoparticles. ACS nano. 8 (9), 9143-9153 (2014).
  53. Suk, J. S., Xu, Q., Kim, N., Hanes, J., Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews. 99, 28-51 (2016).
  54. Huang, C. C., Khu, N. H., Yeh, C. S. The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies. Biomaterials. 31 (14), 4073-4078 (2010).
  55. Zhao, N., et al. Size-Controlled Synthesis and Dependent Magnetic Properties of Nearly Monodisperse Mn3O4 Nanocrystals. Small. 4 (1), 77-81 (2008).
  56. He, D., Hai, L., He, X., Yang, X., Li, H. W. Glutathione-Activatable and O2/Mn2+-Evolving Nanocomposite for Highly Efficient and Selective Photodynamic and Gene-Silencing Dual Therapy. Advanced Functional Materials. 27 (46), 1704089 (2017).
  57. He, D., et al. Redox-responsive degradable honeycomb manganese oxide nanostructures as effective nanocarriers for intracellular glutathione-triggered drug release. Chemical Communications. 51 (4), 776-779 (2015).
  58. Chen, Y., et al. Multifunctional Graphene Oxide-based Triple Stimuli-Responsive Nanotheranostics. Advanced Functional Materials. 24 (28), 4386-4396 (2014).
  59. Prasad, P., et al. Multifunctional Albumin-MnO2 Nanoparticles Modulate Solid Tumor Microenvironment by Attenuating Hypoxia, Acidosis, Vascular Endothelial Growth Factor and Enhance Radiation Response. ACS Nano. 8 (4), 3202-3212 (2014).
  60. Perez De Berti, I., et al. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology. 24, 175601 (2013).
  61. Mourdikoudis, S., Liz-Marzán, L. M. Oleylamine in Nanoparticle Synthesis. Chemistry of Materials. 25 (9), 1465-1476 (2013).
  62. Zheng, M., et al. A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area. Nanoscale Research Letters. 8 (1), 166 (2013).
  63. Xu, Z., Shen, C., Hou, Y., Gao, H., Sun, S. Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials. 21 (9), 1778-1780 (2009).
  64. Hou, Y., Xu, Z., Sun, S. Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angewandte Chemie. 119 (33), 6445-6448 (2007).
  65. McCall, R. L., Sirianni, R. W. PLGA Nanoparticles Formed by Single- or Double-emulsion with Vitamin E-TPGS. Journal of Visualized Experiments. (82), (2013).
  66. Le Joncour, V., Laakkonen, P. Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorganic & Medicinal Chemistry. 26 (10), 2797-2806 (2018).
  67. Perry, J. L., et al. Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location. Nano Letters. 17 (5), 2879-2886 (2017).
  68. Tang, L., et al. Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences. 111 (43), 15344-15349 (2014).
  69. Godunov, E. B., Izotov, A. D., Gorichev, I. G. Dissolution of Manganese Oxides of Various Compositions in Sulfuric Acid Solutions Studied by Kinetic Methods. Inorganic Materials. 54 (1), 66-71 (2018).
check_url/61572?article_type=t

Play Video

Cite This Article
Martinez de la Torre, C., Bennewitz, M. F. Manganese Oxide Nanoparticle Synthesis by Thermal Decomposition of Manganese(II) Acetylacetonate. J. Vis. Exp. (160), e61572, doi:10.3791/61572 (2020).

View Video