Summary

Avaliando as propriedades angiogenéticas de células-tronco do câncer de ovário usando o Sistema de Cocultura Tridimensional, NICO-1

Published: December 05, 2020
doi:

Summary

As células-tronco do câncer de ovário (OCSC) são responsáveis pelo início, recorrência, resistência terapêutica e metástase do câncer. Considera-se que o nicho vascular do OCSC promove a auto-renovação dos OCSCs, levando à quimiorresistência. Este protocolo fornece a base para o estabelecimento de um modelo de nicho vascular OCSC reprodutível in vitro.

Abstract

As células-tronco cancerígenas (CSCs) residem em um nicho de suporte, constituindo um microambiente composto por células estromais adjacentes, vasos e matriz extracelular. A capacidade das CSCs de participar do desenvolvimento do endotélio constitui uma característica importante que contribui diretamente para a compreensão geral dos mecanismos de tumorigênese e metástase tumoral. O objetivo deste trabalho é estabelecer uma metodologia reprodutível para investigar a capacidade de iniciação tumoral de células-tronco de câncer de ovário (OCSCs). Neste trabalho, examinamos o mecanismo de neovascularização entre células endoteliais e OCSCs, juntamente com as alterações morfológicas das células endoteliais, usando o modelo de co-cultura in vitro NICO-1. Este protocolo permite a visualização da etapa de neovascularização em torno dos OCSCs de forma temporal. A técnica pode fornecer informações sobre as propriedades angiogenéticas dos OCSCs na metástase tumoral.

Introduction

O câncer de ovário é a oitava neoplasia maligna mais comum em mulheres em todo o mundo, com aproximadamente 300.000 novos diagnósticos e uma estimativa de 180.000 mortes anuais1. No diagnóstico inicial, o câncer de ovário geralmente se apresenta com sintomas graves, com cerca de 75% das pacientes já no estágio III-IV. Assim, a taxa de sobrevida em 5 anos é de <30% e a taxa de mortalidade é a mais alta entre os cânceres ginecológicos2, com a eficiência do tratamento para o câncer de ovário sendo altamente dependente de fatores clínicos, como a realização bem-sucedida da cirurgia de debulking, resistência à quimioterapia e recorrência após a terapia inicial.

Os tecidos do câncer de ovário são hierarquicamente organizados, com nem todos os componentes do tumor sendo igualmente capazes de gerar descendentes. As únicas células capazes de se auto-renovar e produzir uma população heterogênea de células tumorais são consideradas como representando células-tronco cancerígenas (CSCs)3. A auto-renovação do CSC e o início do tumor são acompanhados pela promoção da angiogênese para remodelar seu microambiente tumoral com a finalidade de manter um nicho de suporte. No entanto, modelos anteriores não puderam ser utilizados para análises in vitro devido à reprodutibilidade limitada do cultivo de CSCs derivadas de amostras clínicas devido à ruptura de esferoides após múltiplas passagens. Mais recentemente, métodos experimentais para cultivar CSCs de pacientes têm sido desenvolvidos para diversas aplicações 4,5,6,7. Em particular, ao explorar a característica de crescimento das CSCs formando esferoides em placas de fixação ultrabaixa com meio livre de soro, as CSCs cultivadas são induzidas a expressar um marcador de superfície de células-tronco que não é expresso em células tumorais normais com potencial de diferenciação de múltiplas linhagens 8,9.

Dados recentes têm mostrado que a persistência de (O)CSCs ovarianos dormentes visualizados como disseminação no peritônio está associada à sua regeneração como tumores recorrentes10. A compreensão das características moleculares e biológicas dos OCSCs pode, portanto, permitir o direcionamento e a erradicação efetivos dessas células, resultando em potencial remissão tumoral. Em particular, pouco se sabe sobre as características mecanicistas celulares e moleculares dos papéis das CSCs na angiogênese11. Portanto, no presente protocolo, utilizamos OCSCs derivados de pacientes em um ambiente in vitro para investigar a propriedade angiogênica de células endoteliais usando o modelo de cocultura, que pode imitar o microambiente tumoral de CSCs e células endoteliais no local metastático no ambiente clínico. Em última análise, como a neovascularização constitui um processo crítico necessário para apoiar o crescimento e a metástase do tumor, uma melhor compreensão de seu mecanismo permitirá o desenvolvimento de uma nova terapia direcionada para OCSCs no local metastático.

Aqui, apresentamos um protocolo para visualizar a etapa de neovascularização em torno das CSCs de forma temporal. A vantagem do protocolo inclui permitir investigações totalmente reprodutíveis usando o sistema de cocultura 3D, NICO-1, permitindo assim a observação dos efeitos em pacientes da capacidade de iniciação de tumores derivados do OCSC durante a angiogênese de células endoteliais.

Protocol

Todos os procedimentos foram realizados sob o protocolo aprovado pelo Comitê de Ética para o bem-estar humano. Todos os pacientes forneceram consentimento informado por escrito para o uso em pesquisa de suas amostras, e a coleta e o uso de tecidos para este estudo foram aprovados pelo Comitê de Ética em Pesquisa em Análise de Genes do Genoma Humano, da Universidade de Teikyo. 1. Isolamento e cultura de células-tronco de câncer de ovário (OCSCs) de pacientes com câncer de ovário e ascit…

Representative Results

Foram coletados fluidos de ascite obtidos de pacientes com câncer de ovário avançado durante cirurgia ou paracentese com o objetivo de realizar uma cultura estável a longo prazo para esferoides. Aqui, apresentamos casos de uma cultura esferoide de longo prazo de CSCs ovarianos denominadas CSC1 e CSC2. Ambas as linhagens celulares carregam o mesmo diagnóstico e perfis histológicos. Os papéis mecanicistas dos OCSCs subjacentes à interação com as células endoteliais necessárias p…

Discussion

O protocolo apresentado descreve como imitar o microambiente tumoral de OCSCs em um ambiente in vitro. O componente primário do método constitui o modelo de cocultura altamente reprodutível obtido usando o sistema NICO-1, um sistema de co-cultura Transwell indireto. Muitos dos modelos de cocultura atualmente disponíveis examinam os efeitos do contato direto célula-célula em populações celulares cocultivadas 12,13,14,15,16,17,18.<sup class="xref…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado por um Grant-in-Aid for Scientific Research C (grant no. 19K09834 to K.N.) do Ministério da Educação, Ciência e Cultura, Japão.

Materials

0.025% Trypsin  Thermo R001100
10 mL Pipet Thermo 170356N
1250 µL Pipet tip QSP T112XLRS-Q
15 mL tube Nunc 339650
200 µL Pipet tip QSP T110RS-NEW
2-Mercaptoethanol Thermo (Gibco) 21985023
5 mL Pipet Thermo 170366N
50 mL tube Corning 430290
AccuMAX Innovative Cell Technologies AM105
BioCoatTM Collagen I 60mm Dish Corning 356401
Centrifuge KUBOTA 2800
Costar 6 Well Clear Flat Bottom Ultra Low Attachment Multiple Well Plates Corning 3471
Endothelial Cell Growth Medium 2  PromoCell C-22011 
Ethanol WAKO 057-00456
FGF-Basic Thermo (Gibco) PHG0021
Histodenz SIGMA D2158
HUEhT-1 cell JCRB Cell Bank JCRB1458
ICCP Filter 0.6 µm Ginrei Lab. 2525-06
Insulin, human SIGMA (Roche) 11376497001
Luminometer PerkinElmer ARVO MX-flad
Matrigel Matrix Corning 356234
Microscope Yokogawa CQ-1
NICO-1 Ginrei Lab. 2501-02
OptiPlate-96 PerkinElmer 6005290
P1000 Pipet Gilson F123602
P200 Pipet Gilson F123601
PBS Thermo (Gibco) 14190-144
StemPro hESC SFM Thermo (Gibco) A1000701
Transfer Pipet FALCON 357575
Y-27632 WAKO 253-00513

References

  1. Bray, F., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA, a Cancer Journal for Clinicians. 68, 394-424 (2018).
  2. Lengyel, E. Ovarian cancer development and metastasis. American Journal of Pathology. 177 (3), 1053-1064 (2010).
  3. Lytle, N. K., Barber, A. G., Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nature Reviews Cancer. 18 (11), 669-680 (2018).
  4. Dontu, G., et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes and Development. 17 (10), 1253-1270 (2003).
  5. Lonardo, E., et al. Nodal/Activin signaling drives selfrenewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 9 (5), 433-446 (2011).
  6. Ricci-Vitiani, L., et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 445 (7123), 111-115 (2007).
  7. Ohata, H., et al. Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer Research. 72 (19), 5101-5110 (2012).
  8. Ishiguro, T., et al. Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity. Cancer Research. 76 (1), 150-160 (2016).
  9. Singh, S. K., et al. Identification of a cancer stem cell in human brain tumors. Cancer Research. 63 (18), 5821-5828 (2003).
  10. Zong, X., Nephew, K. P. Ovarian cancer stem cells: role in metastasis and opportunity for therapeutic targeting. Cancers (Basel). 11 (7), 934 (2019).
  11. Lizárraga-Verdugo, E., et al. Cancer stem cells and its role in angiogenesis and vasculogenic mimicry in gastrointestinal cancers. Frontiers in oncology. 10, 413 (2020).
  12. Renaud, J., Martinoli, M. G. Development of an insert co-culture system of two cellular types in the absence of cell-cell contact. Journal of Visualized Experiments. (113), e54356 (2016).
  13. Richardson, S. M., et al. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 24 (3), 707-716 (2006).
  14. Plotnikov, E. Y., et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. Journal of Cellular and Molecular Medicine. 12 (5), 1622-1631 (2008).
  15. Sheng, H., et al. A critical role of IFN-gamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research. 18 (8), 846-857 (2008).
  16. Csaki, C., Matis, U., Mobasheri, A., Shakibaei, M. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochemistry and Cell Biology. 131 (2), 251-266 (2009).
  17. Aguirre, A., Planell, J. A., Engel, E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochemical and Biophysical Research Communications. 400 (2), 284-291 (2010).
  18. Proffen, B. L., Haslauer, C. M., Harris, C. E., Murray, M. M. Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen gene expression. Connective Tissue Research. 54 (1), 14-21 (2013).
  19. Goers, L., Freemont, P., Polizzi, K. M. Co-culture systems and technologies: taking synthetic biology to the next level. Journal of the Royal Society & Interface. 11 (96), 20140065 (2014).
  20. De Palma, M., Biziato, D., Petrova, T. Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer. 17, 457-474 (2017).
  21. Burger, R., et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. New England Journal of Medicine. 365, 2473-2483 (2011).
  22. Goel, H., Mercurio, A. VEGF targets the tumour cell. Nature Reviews Cancer. 13, 871-882 (2013).
  23. Yu, L., et al. Interaction between bevacizumab and murine VEGF-A: a reassessment. Investigative Ophthalmology and Visual Science. 49 (2), 522-527 (2008).
check_url/61751?article_type=t

Play Video

Cite This Article
Miyagawa, Y., Nagasaka, K., Yamawaki, K., Mori, Y., Ishiguro, T., Hashimoto, K., Koike, R., Fukui, S., Sugihara, T., Ichinose, T., Hiraike, H., Kido, K., Okamoto, K., Enomoto, T., Ayabe, T. Evaluating the Angiogenetic Properties of Ovarian Cancer Stem-Like Cells using the Three-Dimensional Co-Culture System, NICO-1. J. Vis. Exp. (166), e61751, doi:10.3791/61751 (2020).

View Video