Summary

体外 人体牙浆干细胞向胰腺血统的诱导

Published: September 25, 2021
doi:

Summary

本协议对区分人类牙浆干细胞(hDPSC)与 体外胰腺谱系的两种不同的诱导协议进行了比较:综合协议和非综合协议。综合协议产生更多的胰岛素产生细胞(IPCs)。

Abstract

截至2000年,使用埃德蒙顿协议治疗I型糖尿病胰岛移植的成功仍然面临一些障碍。其中包括数量有限的尸体胰腺捐献者和免疫抑制剂的长期使用。默森奇马尔干细胞(MSCs)被认为是胰岛细胞生成的替代来源的潜在候选者。我们以前的报告成功地说明了建立诱导协议,将人类牙髓干细胞(hDPSC)与胰岛素生成细胞(IPCs)区分。然而,上岗效率差别很大。本文通过综合(微环境和遗传操作)和非集成(微环境操作)诱导协议,演示了通过综合(微环境和遗传操作)来提供 hDPSC 衍生 IPC (hDPSC-IPCs) 的 hDPSC 胰腺感应效率的比较。结果表明,在多剂量葡萄糖挑战下,在三维菌落结构、产量、胰腺mRNA标记和功能特性方面,诱导方法具有明显的感应效率。这些发现将支持未来建立一个临床适用的IPC和胰腺血统生产平台。

Introduction

糖尿病是一个持续的全球关注。国际糖尿病联合会(IDF)的一份报告估计,全球糖尿病患病率将从2000年的1.51亿增加到2015年的4.15亿。最新的流行病学研究预测,全球糖尿病患病率将从2017年的4.51亿增加到2045年的6.93亿。胰岛移植利用埃德蒙顿协议的成功首次证明在2000年,当它被证明保持内源性胰岛素生产和稳定规范的血糖状况在I型糖尿病患者3。然而,埃德蒙顿协议的应用仍然面临瓶颈问题。尸体胰腺捐献者数量有限是主要问题,因为每个I型糖尿病患者至少需要2-4个小岛捐赠者。此外,长期使用免疫抑制剂可能会导致危及生命的副作用4,5。为了解决这个问题,在过去十年中,糖尿病的潜在疗法的开发主要侧重于从各种来源的干细胞6中产生有效的胰岛素生成细胞(IPCs)。

干细胞成为许多疾病的替代疗法,包括糖尿病I型,这是由β细胞的损失引起的。IPC移植是控制这些患者血糖的新方法。本文介绍了生成 IPC 的两种方法,即集成和非集成感应协议。诱导协议模仿自然胰腺发育过程,使成熟和功能IPC8,9。

在这项研究中,hDPSC的特点是MSC表面标记检测的流细胞学,多系分分潜力,和RT-qPCR,以确定干性特性和增殖基因标记(未显示的数据)8,9,10的表达。hDPSC被诱导走向明确的内皮,胰腺内皮,胰腺内分泌,胰腺β细胞或IPC(图1),分别7。为了诱导细胞,使用三步感应方法作为骨干协议。此协议称为非综合协议。在综合协议中,基本胰腺转录因子PDX1在 hDPSC 中表达过度,然后使用三步分化协议在 hDPSC 中引入过度表达PDX1。 非集成协议和集成协议之间的区别在于PDX1在集成协议中过度表达,而不是在非集成协议中过度表达。在这项研究中,胰腺分化被比较为综合和非综合协议。

Protocol

这项工作是根据《赫尔辛基宣言》进行的,并经朱拉隆功大学牙科学院人类研究伦理委员会批准。由于智齿问题,人类DPC(hDPSC)从从前摩尔和摩尔中提取的人类牙浆组织中被分离出来。根据批准的协议(HREC-DCU 2018/054)从患者那里获得知情同意。 1. 综合上岗协议 携带PDX1的扁豆载体的准备 使用人类胚胎肾(HEK)293FT细胞进行病毒包装。培养和维持这些细…

Representative Results

本文比较了两种上岗协议的结果。两个上岗协议的图表在图2A,C中都有说明。在这两个协议中,评估都是在光显微镜下进行的,图像是用 ImageJ 分析的。hDPSC 能够从上岗的第一天起在两个上岗协议中形成类似殖民地的结构。殖民地的形态是圆的和密集的,所有的殖民地漂浮在文化容器在整个上岗期间(图2B,D)。还确定了两个?…

Discussion

实现 MSC 的 IPC 产量提高在糖尿病治疗中起着至关重要的作用。集成协议的关键步骤依赖于用于转导的细胞质量和转导细胞的质量。一些细胞要求,应该检查成功的转导是确保细胞健康,细胞银行管理和细胞处于间歇活动状态。此外,监测转导细胞的生存能力也起着重要作用。转导不太成功是由于受刺激细胞12的生存能力差造成的。对于非综合协议,形态外观和浮动菌落应实现,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

SK、WR 和 QDL 得到了朱拉隆功大学兽医干细胞和生物工程研究组、拉查达菲塞克松博特捐赠基金的支持。托和人民党得到了朱拉隆功学术进步到其2 世纪项目的支持。CS得到了兽医科学学院、朱拉隆功学术促进二世纪项目 、兽医干细胞和生物工程研究组、拉查达菲塞克松博特捐赠基金、朱拉隆功大学和政府研究基金的支持。

Materials

Cell Culture
Antibiotic-Antimycotic Thermo Fisher Scientific Corporation, USA 15240062
Corning® 60 mm TC-treated Culture Dish Corning® 430166
Dulbecco’s Modified Eagle Medium (DMEM) Thermo Fisher Scientific Corporation 12800017
Fetal bovine serum (FBS) Thermo Fisher Scientific Corporation 10270106
GlutaMAX™ Thermo Fisher Scientific Corporation 35050061
Phosphate buffered saline (PBS) powder, pH 7.4 Sigma-Aldrich P3813-10PAK One pack is used for preparing 1 L of PBS solution with sterile DDI
Trypsin-EDTA (0.25%) Thermo Fisher Scientific Corporation 25200072
Lentiviral Vector Carrying PDX1 Preparation
Amicon® Ultra-15 Centrifugal Filter Merck Millipore, USA UFC910024
Human pWPT-PDX1 plasmid Addgene 12256 Gift from Didier Trono; http://n2t.net/addgene:12256; RRID: Addgene_12256
Millex-HV Syringe Filter Unit, 0.45 µm Merck Millipore SLHV033RB
pMD2.G plasmid Addgene 12259 Gift from Didier Trono; http://n2t.net/addgene:12259; RRID: Addgene_12259
Polybrene Infection / Transfection Reagent Merck Millipore TR-1003-G
psPAX2 plasmid Addgene 12260 Gift from Didier Trono; http://n2t.net/addgene:12260; RRID: Addgene_12260
Three-step Induction Protocol
Activin A Recombinant Human Protein Merck Millipore GF300
Beta-mercaptoethanol Thermo Fisher Scientific Corporation 21985-023
Bovine serum albumin (BSA, Cohn fraction V, fatty acid free) Sigma-Aldrich A6003
Glucagon-like peptide (GLP)-1 Sigma-Aldrich G3265
Insulin-Transferrin-Selenium (ITS) Invitrogen 41400-045
Nicotinamide Sigma-Aldrich N0636
Non-Essential Amino Acids (NEAAs) Thermo Fisher Scientific Corporation 11140-050
Non-treated cell culture dish, 60mm Eppendorf 30701011
Sodium butyrate Sigma-Aldrich B5887
Taurine Sigma-Aldrich T0625

References

  1. Cho, N. H., et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 138, 271-281 (2018).
  2. Danaei, G., et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 378 (9785), 31-40 (2011).
  3. Diabetes Care. Minimizing hypoglycemia in diabetes. Diabetes Care. 38 (8), 1583 (2015).
  4. Health Quality Ontario. Islet transplantation: an evidence-based analysis. Ontario Health Technology Assessment Series. 3 (4), 1-45 (2003).
  5. Brennan, D. C., et al. Long-term follow-up of the Edmonton protocol of islet transplantation in the United States. American Journal of Transplantation. 16 (2), 509-517 (2016).
  6. Korsgren, O. Islet encapsulation: Physiological possibilities and limitations. Diabetes. 66 (7), 1748-1754 (2017).
  7. Kuncorojakti, S., Srisuwatanasagul, S., Kradangnga, K., Sawangmake, C. Insulin-Producing Cell Transplantation Platform for Veterinary Practice. Frontiers in Veterinary Science. 7, 4 (2020).
  8. Sawangmake, C., Nowwarote, N., Pavasant, P., Chansiripornchai, P., Osathanon, T. A feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications. 452 (3), 581-587 (2014).
  9. Sawangmake, C., Rodprasert, W., Osathanon, T., Pavasant, P. Integrative protocols for an in vitro generation of pancreatic progenitors from human dental pulp stem cells. Biochemical and Biophysical Research Communications. 530 (1), 222-229 (2020).
  10. Kuncorojakti, S., et al. Alginate/Pluronic F127-based encapsulation supports viability and functionality of human dental pulp stem cell-derived insulin-producing cells. Journal of Biological Engineering. 14, 23 (2020).
  11. Ritz-Laser, B., et al. Ectopic expression of the beta-cell specific transcription factor Pdx1 inhibits glucagon gene transcription. Diabetologia. 46 (6), 810-821 (2003).
  12. Pampusch, M. S., Skinner, P. J. Transduction and expansion of primary T cells in nine days with maintenance of central memory phenotype. Journal of Visualized Experiments: JoVE. (157), (2020).
  13. Fraga, M., et al. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model. International Journal of Nanomedicine. 12, 2061-2067 (2017).
  14. Balak, J. R. A., et al. Highly efficient ex vivo lentiviral transduction of primary human pancreatic exocrine cells. Scientific Reports. 9 (1), 15870 (2019).
  15. Balaji, S., Zhou, Y., Opara, E. C., Soker, S. Combinations of Activin A or nicotinamide with the pancreatic transcription factor PDX1 support differentiation of human amnion epithelial cells toward a pancreatic lineage. Cellular Reprogramming. 19 (4), 255-262 (2017).
  16. Spaeth, J. M., et al. Defining a novel role for the Pdx1 transcription factor in islet β-Cell maturation and proliferation during weaning. Diabetes. 66 (11), 2830-2839 (2017).
  17. Bastidas-Ponce, A., et al. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells. Molecular Metabolism. 6 (6), 524-534 (2017).
  18. Zhu, Y., Liu, Q., Zhou, Z., Ikeda, Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Research & Therapy. 8 (1), 240 (2017).
  19. Ma, D., et al. Culturing and transcriptome profiling of progenitor-like colonies derived from adult mouse pancreas. Stem Cell Research & Therapy. 8 (1), 172 (2017).
  20. Tiedemann, H. B., Schneltzer, E., Beckers, J., Przemeck, G. K. H. Hrabe de Angelis, M. Modeling coexistence of oscillation and Delta/Notch-mediated lateral inhibition in pancreas development and neurogenesis. Journal of Theoretical Biology. 430, 32-44 (2017).
  21. Xu, B., et al. Three-dimensional culture promotes the differentiation of human dental pulp mesenchymal stem cells into insulin-producing cells for improving the diabetes therapy. Frontiers in Pharmacology. 10, 1576 (2019).
  22. Grimm, D., et al. Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells and Development. 27 (12), 787-804 (2018).
  23. Tran, R., Moraes, C., Hoesli, C. A. Controlled clustering enhances PDX1 and NKX6.1 expression in pancreatic endoderm cells derived from pluripotent stem cells. Scientific Reports. 10 (1), 1190 (2020).
  24. Li, X. Y., Zhai, W. J., Teng, C. B. Notch signaling in pancreatic development. International Journal of Molecular Sciences. 17 (1), 48 (2015).
  25. Motoyama, H., et al. Treatment with specific soluble factors promotes the functional maturation of transcription factor-mediated, pancreatic transdifferentiated cells. PLoS One. 13 (5), 0197175 (2018).
  26. Baldan, J., Houbracken, I., Rooman, I., Bouwens, L. Adult human pancreatic acinar cells dedifferentiate into an embryonic progenitor-like state in 3D suspension culture. Scientific Reports. 9 (1), 4040 (2019).
  27. Wedeken, L., et al. Adult murine pancreatic progenitors require epidermal growth factor and nicotinamide for self-renewal and differentiation in a serum- and conditioned medium-free culture. Stem Cells and Development. 26 (8), 599-607 (2017).
  28. Trott, J., et al. Long-term culture of self-renewing pancreatic progenitors derived from human pluripotent stem cells. Stem Cell Reports. 8 (6), 1675-1688 (2017).
  29. Kim, J. S., et al. Construction of EMSC-islet co-localizing composites for xenogeneic porcine islet transplantation. Biochemical and Biophysical Research Communications. 497 (2), 506-512 (2018).
  30. Gauthaman, K., et al. Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive BioMedicine Online. 24 (2), 235-246 (2012).
  31. Schiesser, J. V., Wells, J. M. Generation of beta cells from human pluripotent stem cells: are we there yet. Annals of the New York Academy of Sciences. 1311, 124-137 (2014).
  32. Chmielowiec, J., Borowiak, M. In vitro differentiation and expansion of human pluripotent stem cell-derived pancreatic progenitors. The Review of Diabetic Studies. 11 (1), 19-34 (2014).

Play Video

Cite This Article
Kuncorojakti, S., Rodprasert, W., Le, Q. D., Osathanon, T., Pavasant, P., Sawangmake, C. In vitro Induction of Human Dental Pulp Stem Cells Toward Pancreatic Lineages. J. Vis. Exp. (175), e62497, doi:10.3791/62497 (2021).

View Video