Summary

从人包皮中分离、培养和表征原代施旺细胞、角质形成细胞和成纤维细胞

Published: March 23, 2022
doi:

Summary

研究与肌肉骨骼损伤相关的伤口愈合通常需要评估施万细胞(SCs)、角质形成细胞和成纤维细胞之间的 体外 相互作用。该协议描述了从人包皮中分离,培养和表征这些原代细胞。

Abstract

该协议描述了分离方法,培养条件以及使用皮肤的快速酶解离具有高产量和活力的人类原代细胞的表征。原代角质形成细胞、成纤维细胞和施万细胞都是从人类新生儿包皮中采集的,可按照标准护理程序获得。去除的皮肤被消毒,皮下脂肪和肌肉被用手术刀去除。该方法包括表皮和真皮层的酶促和机械分离,然后进行额外的酶消化,以从这些皮肤层中的每一层获得单细胞悬浮液。最后,按照标准的细胞培养方案在适当的细胞培养基中培养单细胞,以在几周内保持生长和活力。总之,这种简单的方案允许从一块皮肤中分离,培养和表征所有三种细胞类型,以进行皮肤 – 神经模型的 体外 评估。此外,这些细胞可以在共培养物中一起使用,以测量它们对彼此的影响以及它们对 体外 创伤的反应,其形式是在与伤口愈合相关的培养物中机器人进行的划痕。

Introduction

衍生自活组织并在 体外 条件下培养的原代细胞与生理状态1非常相似,使其成为研究生理和病理生理过程的理想模型。皮肤含有多种细胞类型,包括角质形成细胞,成纤维细胞,皮脂细胞,黑素细胞和施万细胞(SC),可以分离和培养用于 体外 实验。尚未描述从单块皮肤中分离和培养角质形成细胞、成纤维细胞和 SC 的方法。该协议的目标是双重的:1)建立一种可靠且可重复的真皮SC分离和培养的方法,以及2)使用一种有效,稳健的方法从单个人包皮中分离角质形成细胞,成纤维细胞和SC。

目前,已有分离皮肤角质形成细胞234和成纤维细胞56的既定方案。这些研究描述了从皮肤中分离角质形成细胞,成纤维细胞或两者,但没有方案解决如何从人类皮肤建立原代SC的培养物。最近的研究表明,神经元SCs调节角质形成细胞和成纤维细胞过程并调节正常的皮肤生理功能7。因此,SC对皮肤稳态至关重要,并且对影响相邻皮肤细胞类型行为的调节生理学有重大贡献8。因此,允许分离每种细胞类型的方案非常适合涉及细胞 – 细胞间通信或细胞类型之间串扰的体外实验。

该协议描述了从单个皮肤建立原代细胞的单个细胞培养物。当可用组织量有限时,该方案特别有用。此外,从单个供体中分离所有三种细胞类型可以在细胞类型或共培养实验之间进行强有力的比较,同时减轻所需实验期间遗传学的影响。

Protocol

出于研究目的的去识别化人类包皮组织的获取和使用进行了审查,并获得了宾夕法尼亚州立大学医学院机构审查委员会(IRB #17574)确定的“非人类研究”。 注意:通过遵循以下方案,从单个包皮中获得2.4 x 106 角质形成细胞,4.4 x 106 成纤维细胞和1.1 x 106 SC。通常,这些原代细胞可用于3次传代,具体取决于实验条件。 1. 原代?…

Representative Results

正常新生儿包皮用于原发性表皮角质形成细胞和真皮SC和成纤维细胞的分离。将分离的原代细胞在含有生长因子的相应细胞培养基中培养。在培养瓶中接种SCs和成纤维细胞后,大多数细胞在2小时内粘附在烧瓶底部。在角质形成细胞的情况下,大多数角质形成细胞粘附24小时。分离的表皮原代角质形成细胞在第7天达到85%汇合,并表现出特征性细胞形态(鹅卵石形状)(图1A)?…

Discussion

该协议描述了一种从包皮的单个片段中分离三个不同细胞群的方法,即角质形成细胞,成纤维细胞和施旺细胞。有一些分离方案可用于分离角质形成细胞和成纤维细胞2356,但没有一种描述SC分离。除了皮肤中的关键结构细胞、角质形成细胞和成纤维细胞外,皮肤还受到感觉传入结构和自主神经?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢Fadia Kamal博士和Reyad Elbarbary博士允许我们使用实验室仪器和技术支持。这项工作得到了NIH(K08 AR060164-01A)和国防部(W81XWH-16-1-0725)向J.C.E.的资助,以及宾夕法尼亚州立大学好时医学中心的机构支持。

Materials

0.22 µM sterile filters (Millex-GP Syringe Filter Unit,polyethersulfone) MilliporeSigma SLGPR33RS
70 µM cell strainers CELLTREAT 229483
100 µM cell strainers CELLTREAT 229485
1 mL disposable syringes BD Luer-Lok BD-309659
5 mL disposable syringes (Syringe sterile, single use) BD Luer-Lok BD309646
10 mL disposable syringes BD Luer-Lok BD305462
1% TritonX-100 Sigma X100-1L Prepared at the time of use
4% paraformaldehyde solution ThermoFisher Scientific J19943.K2 Ready to use and store at 4 °C
5% BSA Sigma A7906-100G Prepared at the time of use
70% ethanol Pharmco 111000200
Antibiotic ScienCell Research 503
Chemometec Vial1-Cassette Fisher Scientific NC1420193
Collagenase Gibco 17018-029
Coverslip Fisherbrand 12544D 22*50-1.5
Dispase I Sigma-Aldrich D46693
DMEM basal medium ScienCell Research 9221
Dulbecco's phosphate-buffered saline free from Ca2+ and Mg2+ (DPBS) Corning  21-031-CV)
Nunc 15 mL Conical Sterile Polypropylene Centrifuge Tubes ThermoFisher Scientific 339651
Nunc 50 mL Conical Sterile Polypropylene Centrifuge Tubes ThermoFisher Scientific 339653
1.5 mL micro-centrifuge tubes Fisherbrand 02-681-5
Fetal bovine serum (FBS) ThermoFisher Scientific 10082147
Fibroblast complete medium ScienCell Research 2331
Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594 Invitrogen A11032 Dilution (1:500)
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A11008 Dilution (1:500)
Hanks' Buffered Saline Solution (HBSS buffer) Lonza CC-5022
Human foreskin De-identified human foreskin tissue for research purposes (Institutional Review Board- IRB #17574).
KGM-GOLD keratinocyte medium (KGM gold and supplements) Lonza 00192151 and 00192152
Mouse alpha-smooth muscle actin antibody ThermoFisher Scientific 14-9760-82 Dilution (1:200)
Mouse Cytokeratin14 antibody Abcam ab7800 Dilution (1:100)
Mouse S100 antibody ThermoFisher Scientific MA5-12969 Dilution (1:200)
Multi chambered (4 well glass slide) Tab-Tek 154526
NucleoCounter -Via1-Cassette Chemometec 941-0012
Poly-L-Lysisne (PLL) ScienCell Research 32503
ProLong Gold Anti-fade Mountant with DAPI Invitrogen P36935
Rabbit K10 antibody Sigma-Aldrich SAB4501656 Dilution (1:100)
Rabbit p75-NTR antibody Millipore AB1554 Dilution (1:500)
Rabbit vimentin ProteinTech 10366-1-AP Dilution (1:200)
Schwann cell culture medium ScienCell Research 1701
Precision tweezers DUMONT straight with extra fine tips Dumostar, 5 ROTH LH75.1 Sterilize with 70% alcohol before use
IRIS Scissors, sharp/sharp. Length 4–3/8"(111mm) Codman 54-6500 Sterilize with 70% alcohol before use
Sterilized surgical – sharp blade (Duro Edge Economy Single Edge Blades) Razor blade company 94-0120 Sterilize with 70% alcohol before use
T25 culture flask Corning 353109
Trypsin neutralization buffer (TNS) Lonza CC-5002
Trypsin/EDTA Lonza CC-5012
Inverted microscope ZEISS Axio Observer 7- Axiocam 506 mono – Apotome.2 microscope For immunofluorescence of chamber slide containing stained cells
Inverted microscope ZEISS Primovert For visulaizing/observing cell attachment or detachment

References

  1. Hawksworth, G. M. Advantages and disadvantages of using human cells for pharmacological and toxicological studies. Human & Experimental Toxicology. 13 (8), 568-573 (1994).
  2. Green, H., Kehinde, O., Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proceedings of the National Academy of Sciences of the United States of America. 76 (11), 5665-5668 (1979).
  3. Fuchs, E., Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 19 (4), 1033-1042 (1980).
  4. Aasen, T., Izpisua Belmonte, J. C. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols. 5 (2), 371-382 (2010).
  5. Seluanov, A., Vaidya, A., Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. Journal of Visualized Experiments: JoVE. (44), e2033 (2010).
  6. Belviso, I., et al. Isolation of adult human dermal fibroblasts from abdominal skin and generation of induced pluripotent stem cells using a non-integrating method. Journal of Visualized Experiments: JoVE. (155), e60629 (2020).
  7. Silva, W. N., et al. Role of Schwann cells in cutaneous wound healing. Wound Repair and Regeneration. 26 (5), 392-397 (2018).
  8. Bray, E. R., Cheret, J., Yosipovitch, G., Paus, R. Schwann cells as underestimated, major players in human skin physiology and pathology. Experimental Dermatology. 29 (1), 93-101 (2020).
  9. Laverdet, B., et al. Skin innervation: important roles during normal and pathological cutaneous repair. Histology and Histopathology. 30 (8), 875-892 (2015).
  10. Jessen, K. R., Mirsky, R., Lloyd, A. C. Schwann cells: Development and role in nerve repair. Cold Spring Harbor Perspectives in Biology. 7 (7), 020487 (2015).
  11. Bentley, C. A., Lee, K. F. p75 is important for axon growth and Schwann cell migration during development. The Journal of Neuroscience. 20 (20), 7706-7715 (2000).
  12. Rutkowski, J. L., et al. Signals for proinflammatory cytokine secretion by human Schwann cells. Journal of Neuroimmunology. 101 (1), 47-60 (1999).
  13. Kumar, A., Brockes, J. P. Nerve dependence in tissue, organ, and appendage regeneration. Trends in Neurosciences. 35 (11), 691-699 (2012).
  14. Balakrishnan, A., et al. Insights into the role and potential of Schwann cells for peripheral nerve repair from studies of development and injury. Frontiers in Molecular Neuroscience. 13, 608442 (2020).
  15. Gresset, A., et al. Boundary caps give rise to neurogenic stem cells and terminal glia in the skin. Stem Cell Reports. 5 (2), 278-290 (2015).
  16. Stratton, J. A., et al. Purification and characterization of Schwann cells from adult human skin and nerve. eNeuro. 4 (3), (2017).
check_url/63776?article_type=t

Play Video

Cite This Article
Jagadeeshaprasad, M. G., Govindappa, P. K., Nelson, A. M., Elfar, J. C. Isolation, Culture, and Characterization of Primary Schwann Cells, Keratinocytes, and Fibroblasts from Human Foreskin. J. Vis. Exp. (181), e63776, doi:10.3791/63776 (2022).

View Video