Summary

东方果蝇背侧芽孢杆菌CRISPR/Cas9诱变实验方案

Published: September 28, 2022
doi:

Summary

本文介绍了东方果蝇背CRISPR/Cas9诱变的分步方案。该标准化协议提供的详细步骤将作为产生突变果蝇的有用指南,用于背双歧杆菌的功能基因研究。

Abstract

东方果蝇 Bactrocera dorsalis 是一种高度侵入性和适应性的害虫物种,对柑橘和全球150多种其他水果作物造成损害。由于成年果蝇具有很强的飞行能力,雌性果蝇在果皮下产卵,因此需要直接接触害虫的杀虫剂通常在田间表现不佳。随着分子生物学工具和高通量测序技术的发展,许多科学家正在尝试制定环保的害虫管理策略。这些包括基于RNAi或基因编辑的杀虫剂,它们下调或沉默各种害虫中的基因(分子靶标),例如参与搜索行为的嗅觉基因。为了使这些策略适用于东方果蝇控制,需要有效的功能基因研究方法。在 背苜蓿 的存活和繁殖中具有关键功能的基因是基因敲低和/或沉默的良好分子靶标。CRISPR/Cas9系统是一种用于基因编辑的可靠技术,特别是在昆虫中。本文提出了一种系统 的方法,包括引导RNA的设计和合成、胚胎采集、胚胎注射、昆虫饲养和突变体筛选。这些协议将作为对背 侧双歧杆菌功能基因研究感兴趣的研究人员产生突变果蝇的有用指南。

Introduction

东方果蝇 Bactrocera dorsalis ,是一种世界性的害虫物种,对 150 多种水果作物造成损害,包括番石榴、芒果、尤金属、苏里南樱桃、柑橘、枇杷和木瓜1。仅在广东省(中国)造成的损失估计就超过2亿元人民币。成年雌性将卵插入成熟或成熟果实的皮下,导致果实腐烂和脱落,从而降低果实品质和作物总产量2。由于成年果蝇具有很强的飞行能力,它们的幼虫钻入果皮,因此需要直接接触害虫的杀虫剂在田间表现不佳。此外,杀虫剂的广泛使用增加了 背双歧杆菌 对各种农业化学品的抵抗力,使得控制这些有害害虫变得更加困难3。因此,迫切需要制定有效和环保的害虫管理策略。

最近,随着分子生物学工具和高通量测序技术的发展,科学家们正试图开发环境友好的害虫管理策略,例如RNAi,该策略针对各种害虫的重要基因(分子靶标)的功能。通过功能基因研究,可以鉴定出对害虫生存和繁殖至关重要的基因,并进一步作为改进专门针对性和环境友好型害虫管理工具的潜在分子靶标4。为了使这些策略适应东方果蝇控制,需要有效的功能基因研究方法。

CRISPR/Cas(成簇规则间隔短回文重复序列/CRISPR相关)核酸内切酶系统最初是在细菌和古细菌中发现的,并发现是一种参与识别和降解外来细胞内DNA的适应性机制,例如通过感染噬菌体引入的机制5。在II型CRISPR系统中,Cas9核酸内切酶在小相关RNA(crRNA和tracrRNA)的引导下切割侵入DNA678,并已成为迄今为止使用最广泛的基因编辑工具之一9,101112。由于CRISPR/Cas9系统具有基因沉默效率高、成本低等优点,因此已被应用于各种昆虫物种的基因编辑,包括埃及伊蚊1314蝗虫迁徙15森16。在B. dorsalis中,与体色,翅膀二态性和性别决定相关的基因已经使用CRISPR / Cas917,1819成功敲除。然而,CRISPR / Cas9在这种昆虫中应用的详细程序仍然不完整。此外,研究人员为背侧双歧杆菌基因编辑提供的一些步骤也各不相同,需要标准化。例如,Cas9的形式在已发表的参考文献171819中是不同的。

本文提供了利用CRISPR/Cas9系统诱变背 苜蓿 的系统方法,包括引导RNA的设计和合成、胚胎采集、胚胎注射、昆虫饲养和突变体筛选。该协议将作为对 背侧双歧杆菌功能基因研究感兴趣的研究人员产生突变苍蝇的有用指南。

Protocol

1. 靶标设计与sgRNA的 体外 合成 通过背侧双歧杆菌基因组的生物信息学分析,预测感兴趣的靶基因的结构并确定外显子和内含子之间的边界(此处使用的软件应用程序列在材料表中)。注意:BLAT20 用于搜索基因组中潜在的基因位点。使用Hisat221将高质量的RNA-seq读数(转录组)与获得的基因位点对齐。Samtoo…

Representative Results

该协议提供了使用CRISPR / Cas9技术开发背 侧双歧杆菌 突变体的详细步骤,包括gDNA选择,收集胚胎和显微注射,昆虫维持和突变体筛选的代表性结果。 所选基因的靶位点的示例位于第三个外显子中(图1C)。该位点高度保守,通过凝胶电泳检测合成gRNA的DNA模板(图1D)和体 外 转录获得的gRNA的单条带(?…

Discussion

CRISPR/Cas9系统是使用最广泛的基因编辑工具,具有多种应用,如基因Threpy30,作物育种31和基因功能的基础研究32该系统已被应用于各种昆虫物种的基因编辑,并已成为害虫功能基因研究的有效工具。我们在这里介绍的方案标准化了引导RNA的设计和合成,收集胚胎,胚胎注射,昆虫饲养和突变体筛选的过程。此外,还增加了一个故障排除表来?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了深圳市科技计划(批准号:KQTD20180411143628272)和深圳市大鹏新区科技创新与产业发展专项资金(批准号:PT202101-02)的支持。

Materials

6x DNA Loading Buffer TransGen Biotech GH101-01
Artificial climate chamber ShangHai BluePard MGC-350P
AxyPrep Genomic DNA Mini-Extraction Kit Axygen AP-MN-MS-GDNA-250G
BLAT NA NA For searching potential gene loci in the genome
Capillary Glass WPI  1B100F-4
Eppendorf InjectMan 4 micromanipulator Eppendorf InjectMan 4
GeneArt Precision gRNA Synthesis Kit Thermo Fisher Scientific A29377
Hisat2 NA NA For aligning the transcriptome to the acquired gene loci
IGV NA NA For visualizing the results from Transdecoder
Microgrinder NARISHIGE EG-401
Olympus Microscope Olympus Corporation SZ2-ILST
pEASY-Blunt Cloning Kit TransGen Biotech CB101-02 https://www.transgenbiotech.com/data/upload/pdf/CB101_2022-07-14.pdf
Phenol red solution Sigma-Aldrich P0290-100ML
Pipette cookbook 2018 P-97 & P-1000 Micropipette Pullers Instrument Company  https://www.sutter.com/PDFs/cookbook.pdf
PrimeSTAR HS (Premix) Takara Biomedical Technology R040A
SAMtools NA NA For generating the sorted bam files
sgRNAcas9-AI NA NA sgRNA design
http://123.57.239.141:8080/home
Sutter Micropipette Puller Sutter  Instrument Company  P-97
Trans2K DNA Marker TransGen Biotech BM101-02
Transdecoder NA NA For combining the results of assemble transcripts and gene loci information
https://github.com/TransDecoder/TransDecoder/releases/tag/TransDecoder-v5.5.0
TrueCut Cas9 Protein v2 Thermo Fisher Scientific A36498
Ultra-trace biological detector Thermo Fisher Scientific Nanodrop 2000C

References

  1. Christenson, L. D., Foote, R. H. Biology of fruit flies. Annual Review of Entomology. 5 (1), 171-192 (1960).
  2. Ma, X., et al. The assessment of the economic losses caused by Bactrocera dorsalis, B. cucurbitae and B. tau to Guangdong province. Plant Quarantine. 27 (3), 50-56 (2013).
  3. Jin, M., et al. Chemical control measures and drug resistance management of Bactrocera dorsalis. Agrochemicals. 60 (1), 1-5 (2021).
  4. Yang, B., Liu, Y., Wang, B., Wang, G. Olfaction-based behaviorally manipulated technology of pest insects: research progress, opportunities and challenges. Bulletin of National Natural Science Foundation of China. 34 (4), 441-446 (2020).
  5. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337 (6096), 816-821 (2012).
  6. Garneau, J. E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 468 (7320), 67-71 (2010).
  7. Pyzocha, N. K., et al. RNA-guided genome editing of mammalian cells. Gene Correction. , 269-277 (2014).
  8. Weiss, D., et al. CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Frontiers in Cellular and Infection Microbiology. 4, 37 (2014).
  9. Doudna, J. A., Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science. 346 (6213), 1258096 (2014).
  10. Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339 (6121), 819-823 (2013).
  11. Li, D., et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology. 31 (8), 681-683 (2013).
  12. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918 (2013).
  13. Li, H., et al. Generating mutant Aedes aegypti mosquitoes using the CRISPR/Cas9 system. STAR protocols. 2 (2), 100432 (2021).
  14. Zhu, G. -. H., et al. Expanding the toolkit for genome editing in a disease vector, Aedes aegypti: transgenic lines expressing Cas9 and single guide RNA induce efficient mutagenesis. The CRISPR Journal. 4 (6), 846-853 (2021).
  15. Li, Y., et al. CRISPR/Cas9 in locusts: Successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochemistry and Molecular Biology. 79, 27-35 (2016).
  16. Liu, Q., et al. Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. Insect Biochemistry & Molecular Biology. 86, 58-67 (2017).
  17. Zhao, S., et al. Efficient somatic and germline genome engineering of Bactrocera dorsalis by the CRISPR/Cas9 system. Pest Management Science. 75 (7), 1921-1932 (2019).
  18. Bai, X., et al. CRISPR/Cas9-mediated knockout of the eye pigmentation gene white leads to alterations in colour of head spots in the oriental fruit fly, Bactrocera dorsalis. Insect Molecular Biology. 28 (6), 837-849 (2019).
  19. Zheng, W., et al. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9-mediated mutagenesis of the multiple edematous wings gene induces muscle weakness and flightlessness in Bactrocera dorsalis (Diptera: Tephritidae). Insect Molecular Biology. 28 (2), 222-234 (2019).
  20. Kent, W. J. BLAT-the BLAST-like alignment tool. Genome Research. 12 (4), 656-664 (2002).
  21. Kim, D., Langmead, B., Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods. 12 (4), 357-360 (2015).
  22. Danecek, P., et al. Twelve years of SAMtools and BCFtools. Gigascience. 10 (2), (2021).
  23. Kovaka, S., et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology. 20 (1), 278 (2019).
  24. . TransDecoder Available from: https://github.com/TransDecoder/TransDecoder/releases/tag/TransDecoder-v5.5.0 (2018)
  25. Robinson, J. T., et al. Integrative genomics viewer. Nature Biotechnology. 29 (1), 24-26 (2011).
  26. Chang, H., et al. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Current Biology. 27 (11), 1610-1615 (2017).
  27. Xie, S., et al. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PloS One. 9 (6), 100448 (2014).
  28. Zheng, Q. P., et al. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques. 57 (3), 115-124 (2014).
  29. Ren, L., et al. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Current Biology. 31 (10), 2220-2226 (2021).
  30. Xiao, Q., et al. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Frontiers in Cellular and Infection Microbiology. 9, 69 (2019).
  31. El-Mounadi, K., et al. Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Frontiers in Plant Science. 11, 56 (2020).
  32. Hsu, P. D., et al. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157 (6), 1262-1278 (2014).
  33. Labun, K., et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research. 47, 171-174 (2019).
  34. Ai, D., et al. Embryo microinjection and knockout mutant identification of CRISPR/Cas9 genome-edited Helicoverpa armigera (Hübner). Journal of Visualized Experiments. (173), e62068 (2021).
  35. Xie, S., et al. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PloS One. 9 (6), 100448 (2014).
  36. Gratz, S. J., et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 194 (4), 1029-1035 (2013).
  37. Zhu, G. H., et al. Knockout of juvenile hormone receptor, Methoprene-tolerant, induces black larval phenotype in the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences. 116 (43), 21501-21507 (2019).
  38. Laohakieat, K., Isasawin, S., Thanaphum, S. The transformer-2 and fruitless characterisation with developmental expression profiles of sex-determining genes in Bactrocera dorsalis and B. correcta. Scientific Reports. 10 (1), 1-13 (2020).
  39. Gabrieli, P., et al. Sperm-less males modulate female behaviour in Ceratitis capitata (Diptera: Tephritidae). Insect Biochemistry and Molecular Biology. 79, 13-26 (2016).
check_url/64195?article_type=t

Play Video

Cite This Article
Yuan, J., Zhang, J., Zhang, Y., QiQiGe, W., Liu, W., Yan, S., Wang, G. Protocols for CRISPR/Cas9 Mutagenesis of the Oriental Fruit Fly Bactrocera dorsalis. J. Vis. Exp. (187), e64195, doi:10.3791/64195 (2022).

View Video