Summary

小鼠结肠隐窝三维培养离研究肠道干细胞功能

Published: October 11, 2022
doi:

Summary

本协议描述了建立鼠结肠类器官系统以研究claudin-7敲除模型中结肠干细胞的活性和功能。

Abstract

肠上皮每5-7天再生一次,并由位于隐窝区域底部的肠上皮干细胞(IESC)群控制。IESC包括活性干细胞,其自我更新并分化为各种上皮细胞类型,以及静止干细胞,在受伤的情况下作为储备干细胞。肠上皮的再生由这些活性IESC的自我更新和分化能力控制。此外,隐窝干细胞群的平衡和干细胞生态位的维持对于肠道再生至关重要。类器官培养是研究调节干细胞存活和功能的蛋白质、信号分子和环境线索的一种重要且有吸引力的方法。该模型比动物模型更便宜,耗时更少,并且更易于操作。类器官还模仿组织微环境,提供 体内 相关性。本协议描述了结肠隐窝的分离,将这些分离的隐窝细胞嵌入到三维凝胶基质系统中并培养隐窝细胞以形成能够自组织,增殖,自我更新和分化的结肠类器官。该模型允许人们操纵环境 – 敲除特定的蛋白质,如claudin-7,激活/停用信号通路等 – 研究这些效应如何影响结肠干细胞的功能。具体而言,研究了紧密连接蛋白claudin-7在结肠干细胞功能中的作用。Claudin-7对于维持肠道稳态和屏障功能和完整性至关重要。在小鼠中敲除claudin-7诱导炎症性肠病样表型,表现出肠道炎症,上皮增生,体重减轻,粘膜溃疡,上皮细胞脱落和腺瘤。此前,据报道,claudin-7是小肠肠上皮干细胞功能所必需的。在该协议中,建立了结肠类器官培养系统以研究claudin-7在大肠中的作用。

Introduction

肠道类器官培养是一种三维(3D)离体系统,其中干细胞从原代组织的肠隐窝中分离并接种到凝胶基质12。这些干细胞能够自我更新,自我组织和器官功能2。类器官模拟组织微环境,与二维(2D)体外细胞培养模型更类似于体内模型,尽管可操作性不如细胞34。该模型消除了2D模型中遇到的障碍,例如缺乏适当的细胞-细胞粘附,细胞-基质相互作用和同质群体,并且还减少了动物模型的局限性,包括高成本和长时间5。肠道类器官 – 也称为结肠类器官,用于从结肠隐窝来源的干细胞生长的类结肠 – 本质上是包含上皮的微型器官,包括体内存在的所有细胞类型以及腔。该模型允许操纵系统来研究肠道的许多方面,例如干细胞生态位、肠道生理学、病理生理学和肠道形态发生356。它还为药物发现、研究炎症性肠病 (IBD) 和结直肠癌等人类肠道疾病、患者特异性个性化治疗开发以及研究组织再生4789 提供了一个很好的模型。此外,类器官系统还可用于研究细胞通讯、药物代谢、活力、增殖和对刺激的反应78。虽然动物模型可用于测试肠道病理状况的潜在治疗方法,但它们非常有限,因为同时研究多种药物是一项挑战。体内混杂变量较多,相关成本和时间分别高而长。另一方面,类器官培养系统允许在较短的时间内一次筛选多种治疗方法,并且还允许通过使用患者来源的类器官培养物进行个性化治疗48。结肠类器官模仿组织组织、微环境和功能的能力也使它们成为研究再生和组织修复的优秀模型9。本实验室建立了小肠类器官培养系统,研究claudin-7对小肠干细胞功能的影响10。在这项研究中,建立了一个大型肠道类器官培养系统来研究干细胞在条件claudin-7敲除(cKO)模型中自我更新,分化和增殖的能力或缺乏能力。

Claudin-7是一种非常重要的紧密连接(TJ)蛋白,在肠道中高度表达,对于维持TJ功能和完整性至关重要11。cKO小鼠患有IBD样表型,表现出严重的炎症,溃疡,上皮细胞脱落,腺瘤和细胞因子水平升高1112。虽然人们普遍认为克劳迪斯对上皮屏障功能至关重要,但克劳迪斯的新角色正在出现;它们参与增殖、迁移、癌症进展和干细胞功能1012,1314,151617目前尚不清楚claudin-7如何影响结肠干细胞的干细胞生态位和功能。由于肠道大约每5-7天快速自我更新一次,因此维持干细胞生态位和活性干细胞的正常功能至关重要18。在这里,建立了一个系统来检查claudin-7对结肠干细胞生态位的潜在调节作用。

Protocol

所有动物实验和程序均由东卡罗来纳大学(ECU)动物护理和使用委员会(IACUC)批准,并按照美国国立卫生研究院和ECU关于实验动物护理和使用指南进行。通过将C57BL6claudin-7-flox转基因小鼠与Villin-CreERT2小鼠杂交产生诱导的肠特异性claudin-7基因敲除小鼠19。本研究使用3个月大的雄性和雌性小鼠。 1. 试剂/设备准备 在开始相关实验之前冷却以…

Representative Results

为了检查claudin-7对结肠干细胞的调节作用,如上所述从鼠结肠组织中分离结肠隐窝,如图 1A所示。从原代组织中分离出隐窝后,将它们接种在96孔板中的3D基质中以生长11天(图1)。正常健康的隐窝将在第2天关闭管腔并变成球状体,并最终在大约第5天开始出芽并形成各种上皮细胞类型(图1B)。允许结肠类生长到第11天,然后收获…

Discussion

类器官培养是研究干细胞功能、肠道生理学、药物发现、人类肠道疾病以及组织再生和修复的优秀模型789101126虽然它有很多优点,但建立起来可能具有挑战性。在整个协议的所有步骤中都必须小心,但最重要的是在电镀阶段。将分离的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究由NIH DK103166资助。

Materials

0.09 cubic feet space-saver vacuum desiccator  United States Plastic Corp 78564 anesthesia chamber
0.5 M EDTA pH 8.0 Invitrogen AM9261
1.5 mL microcentrifuge tubes ThermoFisher 69715
15 mL conical centrifuge tubes Fisher Scientific 14-959-53A
1x Dulbecco’s Phosphate buffered saline Gibco 14190-144
2-methylbutane Sigma 277258
4% paraformaldehyde ThermoFisher J61899.AK
4-hydroxytamoxifen (4OH-TAM) Sigma 579002
50 mL conical centrifuge tubes Fisher Scientific 14-432-22
70 µm nylon cell strainer Corning 352350
96 well culture plate Greiner Bio-One 655180
B-27 Supplement (50x) Gibco 12587-010
Bovine serum albumin Fisher Scientific BP1605-100
Claudin-7 anti-murine rabbit antibody Immuno-Biological Laboratories  18875
Cover glass (24 x 50-1.5) Fisher Scientific 12544E
Cryomolds vwr 25608-916
Cultrex RCF BME, Type 2 R&D Systems 3533-005-02 gel matrix
Cy3 anti-rabbit antibody Jackson Immunoresearch 111-165-003
Dewar Flask Thomas Scientific 1173F61
DMEM High Glucose with L-Glutamine ATCC 30-2002
EVOS FLoid Imaging System ThermoFisher 4477136
Fluoro-Gel II with DAPI Electron Microscopy Sciences 17985-50
GlutaMAX (100x) Gibco 35050-061
Glycine JT Baker 4059-02
HEPES (1 M) Buffer Solution Gibco 15630-080
Hoechst ThermoFisher 62249
In situ cell death detection kit, TMR Red Roche 12156792910
Isoflurane Pivetal 07-893-8440
L-WRN Media Harvard Medical School Gastrointestinal Organoid Derivation and Culture Core N/A
Mouse surgical kit Kent Scientific Corporation INSMOUSEKIT
Murine EGF PeproTech 315-09-500UG
N2 Supplement (100x) Gibco 17502-048
Optimum cutting temperature (OCT) compound  Agar Scientific AGR1180
Penicillin-Streptomycin Gibco 15140-122
Sequenza Rack vwr 10129-584
Sodium Citrate Fisher Scientific S-279
Sucrose Sigma S9378
Triton X-100 Sigma X100
Vacuum filter (0.22 µm; cellulose acetate) Corning 430769
Y-27632 dihydrochloride Tocris Bioscience 1254

References

  1. Hughes, C. S., Postovit, L. M., Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10 (9), 1886-1890 (2010).
  2. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  3. Wallach, T. E., Bayrer, J. R. Intestinal organoids: new frontiers in the study of intestinal disease and physiology. Journal of Pediatric Gastroenterology and Nutrition. 64 (2), 180-185 (2017).
  4. Shankaran, A., Prasad, K., Chaudhari, S., Brand, A., Satyamoorthy, K. Advances in development and application of human organoids. 3 Biotech. 11 (6), 257 (2021).
  5. Angus, H., Butt, A., Schultz, M., Kemp, R. Intestinal organoids as a tool for inflammatory bowel disease research. Frontiers in Medicine. 6, 334 (2020).
  6. Fan, Y., Davidson, L. A., Chapkin, R. S. Murine colonic organoid culture system and down stream assay applications. Methods in Molecular Biology. 1576, 171-181 (2019).
  7. Gupta, N., et al. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioengineering and Translational Medicine. 1 (1), 63-81 (2016).
  8. Yoo, J., Donowitz, M. Intesitnal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World Journal of Gastroenterology. 25 (30), 4125-4147 (2019).
  9. Qu, M., et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. Cell Research. 31 (3), 259-271 (2021).
  10. Xing, T., et al. Tight junction protein claudin-7 is essential for intestinal epithelial stem cell self-renewal and differentiation. Cellular and Molecular Gastroenterology and Hepatology. 9 (4), 641-659 (2020).
  11. Ding, L., et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology. 142 (2), 305-315 (2012).
  12. Lu, Z., Ding, L., Lu, Q., Chen, Y. H. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 1 (3), 24978 (2013).
  13. Ding, L., Lu, Z., Lu, Q., Chen, Y. H. The claudin family of proteins in human malignancy: a clinical perspective. Cancer Management and Research. 5, 367-375 (2013).
  14. Bhat, A. A., et al. Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis. Oncogene. 34 (35), 4570-4580 (2015).
  15. Lu, Z., et al. A non-tight junction function of claudin-7-interaction with integrin signaling in suppressing lung cancer cell proliferation and detachement. Molecular Cancer. 14, 120 (2015).
  16. Wang, K., Xu, C., Li, W., Ding, L. Emerging clinical significance of claudin-7 in colorectal cancer: a review. Cancer Management and Research. 10, 3741-3752 (2018).
  17. Wang, K., et al. Claudin-7 downregulation induces metastasis and invasion in colorectal cancer via the promotion of epithelial-mesenchymal transition. Biochemical and Biophysical Research Communications. 508 (3), 797-804 (2019).
  18. Wang, F., et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology. 145 (2), 383 (2013).
  19. Li, W., et al. Severe intestinal inflammation in the small intestine of mice induced by controllable deletion of claudin-7. Digestive Diseases and Sciences. 63 (5), 1200-1209 (2018).
  20. Donovan, J., Brown, P. Euthanasia. Current Protocols in Immunology. 73 (1), (2006).
  21. Khalil, H., Nie, W., Edwards, R. A., Yoo, J. Isolation of primary myofibroblasts from mouse and human colon tissue. Journal of Visual Experiments. (80), e50611 (2013).
  22. Sugimoto, K., et al. Cell adhesion signals regulate the nuclear receptor activity. Proceedings of the National Academy of Sciences. 116 (49), 24600-24609 (2019).
  23. Mansour, H., et al. Connexin 30 expression and frewuency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina. PLoS One. 8 (3), 57038 (2013).
  24. Miranda, M., et al. Antioxidants rescue photoreceptors in rd1 mice: relationship with thiol metabolism. Free Radical Biology and Medicine. 48 (2), 216-222 (2010).
  25. Wang, L., et al. Mesenchymal stromal cells ameliorate oxidative stress-induced islet endothelium apoptosis and functional impairment via Wnt4-β-catenin signaling. Stem Cell Research and Therapy. 8 (1), 188 (2017).
  26. Almeqdadi, M., Mana, M., Roper, J., Yilmaz, O. Gut organoids: mini-tissues in culture to study intestinal physiology and disease. American Journal of Physiology-Cell Physiology. 317 (3), 405-419 (2019).
check_url/64534?article_type=t

Play Video

Cite This Article
Naser, A. N., Lu, Q., Chen, Y. Three-Dimensional Culture of Murine Colonic Crypts to Study Intestinal Stem Cell Function Ex Vivo. J. Vis. Exp. (188), e64534, doi:10.3791/64534 (2022).

View Video