Summary

微流体流钱伯斯再造使用血止血建模和血小板输注<em>体外</em

Published: March 19, 2016
doi:

Summary

Platelet transfusion and hemostasis was modeled using blood reconstitution and microfluidic flow chambers to investigate the function of blood banking platelets. The data demonstrate the consequences of platelet storage lesion on hemostasis, in vitro.

Abstract

Blood platelets prepared for transfusion gradually lose hemostatic function during storage. Platelet function can be investigated using a variety of (indirect) in vitro experiments, but none of these is as comprehensive as microfluidic flow chambers. In this protocol, the reconstitution of thrombocytopenic fresh blood with stored blood bank platelets is used to simulate platelet transfusion. Next, the reconstituted sample is perfused in microfluidic flow chambers which mimic hemostasis on exposed subendothelial matrix proteins. Effects of blood donation, transport, component separation, storage and pathogen inactivation can be measured in paired experimental designs. This allows reliable comparison of the impact every manipulation in blood component preparation has on hemostasis. Our results demonstrate the impact of temperature cycling, shear rates, platelet concentration and storage duration on platelet function. In conclusion, this protocol analyzes the function of blood bank platelets and this ultimately aids in optimization of the processing chain including phlebotomy, transport, component preparation, storage and transfusion.

Introduction

止血需要的细胞,蛋白质,离子和组织在有限的时空背景下1组合和受规管活动。不受控制的活性可能导致出血或血栓形成和发病率或死亡率有关凝血障碍的光谱。一种微流体流室的实验是一个具有挑战性的技术, 在体外模拟止血。这种方法允许的参与止血与血小板的主导作用过程中的复杂的相互作用的研究。

血管损伤后,血小板粘附到暴露的内皮下基质(糖)的蛋白质,以防止失血。以下粘附,血小板激活和聚集响应于自动和旁分泌信号并最终导致形成血小板网络的,由纤维蛋白稳定化,并导致一公司,伤口密封血栓2。与大多数其他的血小板功能检测,experi与流动室ments顾及血流的物理参数,因此,流变学对参与细胞和生物分子的3,4的影响。

流动腔实验通过改变影响止血(分)关键参数过程,包括粘合剂基质,流变和流动剖面,蜂窝组合物,毒素或药物,离子强度等等的存在产生在止血和血栓形成里程碑式的见解。在过去的二十年中,低通量需要大样本量(10-100毫升)流动腔实验已经发展到微流控室往往由小平行板室,并包括现代技术控制在墙上剪切条件下5灌注全血。 Microscaling已显著增加检测的吞吐量主要是因为硬件设置简化并需要更少的(血)量,使实验更加方便和versati勒。例如,来自小实验动物的血液,现在可以无需牺牲动物使用。因此,转基因小鼠的血样已经在帮助促进或抑制止血的关键分子的鉴定,并在新的基本见解6。

专门研究实验室还经常使用,例如定制流室从聚二甲基硅氧烷(PDMS)7上,可以通过软件blueprinted石印模具聚合。所得室是便宜,一次性和可容易地拆卸为事后分析。此外,基本上船只,包括分叉或急转弯的任何设计可以建立在命令。这种优势也是其缺点,因为标准化已经与流室实验的首要问题,而PDMS定制室都没有帮助这一点。在这个特殊问题的顶部,涂层(条件),荧光探针,抗凝,临时erature和时间采样和分析之间都很差标准化8。这些变量标准化是具有挑战性的,但仍然需要允许实验室间的结果进行比较。本主题是血栓与止血国际社会在对生物流变学9,10科学和标准化分委员会的主要议题。

血小板浓缩物(PC)进行输血在从引起血小板减少和/或出血的各种疾病的患者。但血小板在个人计算机是众所周知的脱敏,特别是在放置时间11功能,劣化进程链接到老化和通常被称为血小板储存损伤。据说有时,这种血小板输血一次发行12恢复,但对于这方面的证据是稀缺的。此外,血小板构成的PC的功能不是常规测试,因为这样的测定之间的关系的治疗或预防效力是13不清楚。微流体流动腔室提供给调查在个人电脑的血小板功能,以优化收集和发行之间操作的链的装置。它是PC,因为我们先前公布的14,15和这里描述的直接(配对)比较强大的研究工具。

Protocol

该协议遵循了人类样本的研究机构道德准则和所涉及的所有供体获得知情同意书。从安特卫普大学医院的机构审查委员会获得批准,这里所描述的实验。 注:温度指示总是室温下,除非另有说明。 1.准备流室设置准备车道,油管和引脚涡流的胶原悬浮液剧烈和在由提供者提供到50微克/ ml的终浓度,等渗葡萄糖溶液稀释1/20。 注意:我们?…

Representative Results

为了证明批内变异,三个相同的重构的全血样品,在胶原涂覆的表面( 图1)同时灌注。这导致了8.7%的变异系数。这一统计数字表明,接受内部试验和实验室内的变化允许相关样本之间可靠的比较。 商业流室的我们在这里描述的入口垂直于测量室,这可引起轻微的湍流,而不是在该点的层流。特别是在无抗凝实?…

Discussion

微流体流室的实验是研究在流动的血液中血小板的功能一个很好的工具,用于在不同的实验环境,以评估在体外止血。尽管可怜的实验室间标准化9,我们证明了我们的实验室内的实验误差是可以接受的。这允许一个给定的研究中比较可靠(配对)的样品。这是使用血小板存储病变,这是血小板保存在血库条件11的不利后果的有案可稽现象验证。此外,我们最近公布的三个可…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

BD vacutainer tube with EDTA  Becton, Dickinson and Company 368856
BD vacutainer tube with Heparin Becton, Dickinson and Company 368480
BD vacutainer tube with Sodium Citrate Becton, Dickinson and Company 366575
Hirudin Blood tube Roche 6675751 001
BD vacutainer Eclipse Becton, Dickinson and Company 368650 Blood collection needle with preattached holder
Pipette tips 100-1000 Greiner bio-one 740290
Pipette tips 2-200 Greiner bio-one 739280
Pipette tips 1-10 Eppendorf A08928
Tube 5mL Simport 11691380
Conical tube 15mL Greiner bio-one 1888271
Conical tube 50mL Greiner bio-one 227261
10 mL Syringe BD 309604
Precision wipes Kimtech 5511
Vena8 Fluoro+ Biochips Cellix 188V8CF-400-100-02P10 Named in figure S1 A as 'Biochip'
Vena8 Tubing Cellix TUBING-TYGON-B1IC-B1OC-ROLL 100F Named in figure S1 B as 'Disposable tubing'
Vena8 Needles Cellix SS-P-B1IC-B1OC-PACK200 Named in figure S1 B as 'Pin'
Connectors for single inlet cables of biochips Cellix CONNECTORS-B1IC-PACK100
Multiflow8 connect Cellix MF8-CONNECT-BIC3-N-THROMBOSIS Named in figure S1 B as 'Reusable tubing' and 'Splitter'
Humidified box Cellix HUMID-BOX
Software microfluidic pump Cellix N/A Venaflux Assay
Horm Collagen Takeda/Nycomed 1130630 Native equine tendon collagen (type I)
Isotonic glucose solution to dilute collagen is supplemented
HEPES buffered saline (HBS) in house preparation in house preparation 10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered saline (0.9% (w/v) NaCl, pH 7.4
Blocking buffer in house preparation in house preparation 1.0% (w/v) bovine serum albumin and 0.1% (w/v) glucose in HBS
Calcein AM Molecular probes C1430
Bleach 10% in house preparation in house preparation
0.1M NaOH in house preparation in house preparation
Denaturated alcohol Fiers T0011.5
Mirus Evo Nanopump Cellix 188-MIRUS-PUMP-EVO with Multiflow8. Named in figure S1 A as 'Pump' and 'Manifold'
Microscope Zeiss Axio Observer Z1 equipped with a colibri-LED and high resolution CCD camera
Software microscope  Zeiss N/A ZEN 2012
Hematology analyzer Sysmex N/A
Table Top Centrifuge Eppendorf 521-0095
Platelet incubater Helmer PF-48i
Incubation water bath GFL 1013
Pipette Brand A03429
Tube Roller Ratek BTR5-12V
Sterile docking device Terumo BCT TSCD
Tubing Sealer Terumo BCT AC-155
Vortex VWR 58816-121

References

  1. Broos, K., Feys, H. B., De Meyer, S. F., Vanhoorelbeke, K., Deckmyn, H. Platelets at work in primary hemostasis. Blood Rev. 25, 155-167 (2011).
  2. Stalker, T. J., et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 121, 1875-1885 (2013).
  3. Sakariassen, K. S., Bolhuis, P. A., Sixma, J. J. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature. 279, 636-638 (1979).
  4. Savage, B., Saldivar, E., Ruggeri, Z. M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 84, 289-297 (1996).
  5. Westein, E., de Witt, S., Lamers, M., Cosemans, J. M., Heemskerk, J. W. Monitoring in vitro thrombus formation with novel microfluidic devices. Platelets. 23, 501-509 (2012).
  6. Varga-Szabo, D., et al. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med. 205, 1583-1591 (2008).
  7. Westein, E., et al. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci USA. , (2013).
  8. Grabowski, E. F., Yam, K., Gerace, M. Evaluation of hemostasis in flowing blood. Am J Hematol. 87 (Suppl 1), S51-S55 (2012).
  9. Roest, M., et al. Flow chamber-based assays to measure thrombus formation in vitro: requirements for standardization. J Thromb Haemost. 9, 2322-2324 (2011).
  10. Heemskerk, J. W. M., et al. Collagen surfaces to measure thrombus formation under flow: possibilities for standardization. J Thromb Haemost. 9, 856-858 (2011).
  11. Shrivastava, M. The platelet storage lesion. Transfus Apher Sci. 41, 105-113 (2009).
  12. Miyaji, R., et al. Decreased platelet aggregation of platelet concentrate during storage recovers in the body after transfusion. Transfusion. 44, 891-899 (2004).
  13. Goodrich, R. P., et al. Correlation of in vitro platelet quality measurements with in vivo platelet viability in human subjects. Vox Sang. 90, 279-285 (2006).
  14. Van Aelst, B., et al. Riboflavin and amotosalen photochemical treatments of platelet concentrates reduce thrombus formation kinetics in vitro. Vox Sang. 108, 328-339 (2015).
  15. Van Aelst, B., Devloo, R., Vandekerckhove, P., Compernolle, V., Feys, H. B. Ultraviolet c light pathogen inactivation treatment of platelet concentrates preserves integrin activation but affects thrombus formation kinetics on collagen in vitro. Transfusion. , (2015).
  16. de Witt, S. M., et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun. 5, 4257 (2014).
  17. Cazenave, J. P., et al. Preparation of washed platelet suspensions from human and rodent blood. Methods Mol Biol. 272, 13-28 (2004).
  18. Jackson, S. P., Nesbitt, W. S., Westein, E. Dynamics of platelet thrombus formation. J Thromb Haemost. 7 (Suppl 1), 17-20 (2009).
  19. Diedrich, B., Remberger, M., Shanwell, A., Svahn, B. M., Ringden, O. A prospective randomized trial of a prophylactic platelet transfusion trigger of 10 x 10(9) per L versus 30 x 10(9) per L in allogeneic hematopoietic progenitor cell transplant recipients. Transfusion. 45, 1064-1072 (2005).
  20. Neeves, K. B., et al. Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays. PloS one . 8, e54680 (2013).
  21. Born, G. V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 194, 927-929 (1962).
  22. Cattaneo, M., et al. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost. 11, 1183-1189 (2013).
  23. Deckmyn, H., Feys, H. B. Assays for quality control of platelets for transfusion. ISBT Sci Series. 8, 221-224 (2013).
  24. Andre, P., et al. Anticoagulants (thrombin inhibitors) and aspirin synergize with P2Y12 receptor antagonism in thrombosis. Circulation. 108, 2697-2703 (2003).
  25. Casari, C., et al. von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin alphaIIbbeta3. J Clin Invest. 123, 5071-5081 (2013).
  26. Gitz, E., et al. Improved platelet survival after cold storage by prevention of Glycoprotein Ibα clustering in lipid rafts. Haematologica. , (2012).
  27. Maurer-Spurej, E., Labrie, A., Brown, K. Routine Quality Testing of Blood Platelet Transfusions with Dynamic Light Scattering. Part Part Syst Char. 25, 99-104 (2008).
  28. Van Kruchten, R., Cosemans, J. M., Heemskerk, J. W. Measurement of whole blood thrombus formation using parallel-plate flow chambers – a practical guide. Platelets. 23, 229-242 (2012).
  29. Zwaginga, J. J., et al. Flow-based assays for global assessment of hemostasis. Part 2: current methods and considerations for the future. J Thromb Haemost. 4, 2716-2717 (2006).
  30. Zwaginga, J. J., et al. Flow-based assays for global assessment of hemostasis. Part 1: Biorheologic considerations. J Thromb Haemost. 4, 2486-2487 (2006).
check_url/cn/53823?article_type=t

Play Video

Cite This Article
Van Aelst, B., Feys, H. B., Devloo, R., Vandekerckhove, P., Compernolle, V. Microfluidic Flow Chambers Using Reconstituted Blood to Model Hemostasis and Platelet Transfusion In Vitro. J. Vis. Exp. (109), e53823, doi:10.3791/53823 (2016).

View Video