Summary

4D共焦点顕微鏡を用いたゼブラフィッシュにおける顔面形態形成を分析する

Published: January 30, 2014
doi:

Summary

タイムラプス共焦点イメージングは​​、胚発生を特徴づけるための有用な強力な技術である。ここでは、方法論を記述し、野生型では頭蓋顔面形態形成を特徴づけるとともに、PDGFRA、Smad5を、そしてSMO変異胚。

Abstract

タイムラプスイメージングは​​、形態形成の過程を直接観察を可能にした技術、あるいは形状の生成である。原因遺伝子操作への光学的透明度と従順に、ゼブラフィッシュ胚は生きている胚における形態形成の経時的分析を行うことで人気のモデル生物となっています。ライブゼブラフィッシュ胚の共焦点イメージングは​​、対象となる組織が持続的な導入遺伝子または注入された色素、蛍光マーカーで標識されている必要があります。プロセスは、胚が健全な発展が正常に進行するように麻酔し、所定の位置に保持されることを要求する。画像化のためのパラメータは、三次元成長を考慮して設定する必要があり、開発の迅速なスナップショットを取得している間に個々の細胞の解決の要求のバランスを取る。我々の結果は、蛍光標識されたゼブラフィッシュ胚のインビボイメージングにおける長期を実行し、多様な組織における行動を検出するための能力を実証頭蓋顔面異常を引き起こす頭蓋神経堤。麻酔および取り付けに起因する発達の遅れは最小限であり、胚はプロセスによって無傷である。タイムラプス画像化された胚を液体培地に戻され、その後、画像化や開発の後のポイントで固定することができる。トランスジェニックゼブラフィッシュ系統の増加量および十分に特徴付けられた運命のマッピングや移植技術を用いて、任意の所望の組織を画像化することは可能です。このように、in vivoイメージング経時は、変異型とマイクロインジェクションされた胚の分析を含めたゼブラフィッシュ遺伝的方法で強力に兼ね備えています。

Introduction

頭蓋顔面形態形成は、複数の細胞型の協調的相互作用を必要とする複雑な多段階プロセスである。頭蓋顔面骨格の大部分は神経堤細胞に由来し、その多くは、咽頭のアーチ1と呼ばれる一過性の構造に背側神経管から移行する必要があります。多くの組織と同様に、頭蓋顔面骨格の形態形成は、特定の発生時点での胚の静止画像によって理解することができるよりも複雑である。それは時間のかかる実行することであるが、in vivoでのタイムラプス顕微鏡は、発生中の胚の細胞や組織での連続に説明します。タイムラプスシリーズの各画像は他の人に文脈を貸すと、現象が発生する理由推測ではなく、その時点で何が起きている推測に向けて研究者の動きを支援します。

in vivoイメージングではこのように実験的なアプローチのための強力な説明的なツールです形態形成を誘導する経路を分解。ゼブラフィッシュゼブラフィッシュは、脊椎動物の胚発生の人気遺伝モデルであり、形態形成のin vivoイメージングのために特に適しています。近代的な、遺伝子導入およびゲノム修飾のための便利な方法が急速にゼブラフィッシュ研究者に利用可能なツールの数を進めています。これらのツールは、遺伝子操作し、顕微鏡検査のため、既に堅牢な方法を強化します。ほぼすべての所望の遺伝的文脈で、ほぼすべての組織のin vivoイメージングはファンタジーより現実に近い。

咽頭のアーチの形態形成運動は、神経堤と隣接する上皮、外胚葉と内胚葉の両方の間の相互作用のシグナリングによって案内される。頭蓋顔面骨格要素の形態形成を推進するために必要である上皮で表現多数のシグナル伝達分子があります。これらのシグナル伝達分子の中では、ソニック·ザ·ヘッジホッグ(Shhは)は非常に重要であるFまたは頭蓋顔面の開発2-8。 SHHは、経口外胚葉および咽頭内胚葉2,6,9,10の両方で表される。内胚葉におけるShhの発現は、アーチ10、アーチ10内神経堤のパターニング、および頭蓋顔面骨格の11の成長の形態形成の動きを規制している。

BMPシグナル伝達は、頭蓋顔面の開発12のためにも極めて重要であると咽頭のアーチの形態形成を変更することがあります。 BMPシグナル伝達は、咽頭のアーチ13,14内堤の背/腹パターン形成を調節する。ゼブラフィッシュにおけるSmad5をの破壊は深刻な口蓋欠陥や正中線15に適切に融合するメッケル軟骨の障害が発生します。さらに、変異体はまた、正中線15で融合咽頭弓の要素番目の 2 番目、3番目 、時には4で、腹側軟骨要素の減少との融合を表示。これらの融合が強くBMPシグナル伝達は、これらの咽頭要素の形態形成を指示することを示唆している。

PDGFシグナル伝達は、頭蓋顔面の開発のために必要であるが、咽頭弓の形態形成における未知の役割を持っています。マウスやゼブラフィッシュPDGFRA変異体の両方が深いmidfacial分裂文形成16〜18を持っている。少なくともゼブラフィッシュでこのmidfacial分裂文形成は、適切な神経堤細胞の遊走16の故障が原因です。神経堤細胞は、咽頭のアーチを入力した後PDGFRAを発現し続ける。さらに、PDGFリガンドは、顔の上皮で発現され、咽頭のアーチ16,19,20内で、このようにPDGFシグナル伝達はまた移行後に咽頭弓の形態形成における役割を果たしている可能性があります。しかし、PDGFRA変異体におけるアーチが行われていない咽頭の形態形成の解析を行う。

ここでは、pharyngulのインビボ共焦点顕微鏡法証明するステージトランスジェニックゼブラフィッシュとは、この期間内に咽頭のアーチの形態形成を説明します。我々はさらに、BMP、PDGF及びShhシグナル伝達経路を破壊する変異によって影響される組織の挙動を示す。

Protocol

1。畜産および変異対立 21が説明されているようにゼブラフィッシュを上げ、繁殖。 本研究で用いたゼブラフィッシュ突然変異対立遺伝子は、16 b1059 Smad5をB1100 22、及びSMOのb577 23 PDGFRAた。これらのゼブラフィッシュの株のソースはZIRCが含まれています。 2。ソリューションと実装の準備注:全ての溶…

Representative Results

吻側方向( 動画1)に移動しながら、野生型胚において、神経堤人口以下、咽頭のアーチは、前方/後方背側/腹軸に沿って細長く。 30時間後に受精(HPF)において、第咽頭弓の前方/後方の長さは、1.8〜1.9倍の背側/腹側の高さの間である。背側/腹側伸びが速く36.5 HPFまで、前方/後方の拡張よりも、着実に進む。ここから、背側/腹側の高さの高原の周りに104程度48 HPFを通して。前方…

Discussion

タイムラプス共焦点顕微鏡は、開発の分析のための強力なツールです。ここでは、神経堤細胞を標識するトランスジェニックを用いて、重要なシグナル伝達経路のための変異体であるゼブラフィッシュにおける咽頭弓の形態形成を研究する方法の有用性を示す。組織レベルに加え分析では、時間経過の分析はまた、細胞スケール28で解析に適用可能である。多くの広く使用されている…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

我々は彼らの専門家の魚のケアのためのメリッサ·グリフィンとジェナRozackyに感謝します。 PDMのおかげEGN支援、寛大さ、そして忍耐を書くため。この作品は、JKEにNIH / NIDCR R01DE020884によってサポートされていました。

Materials

6 lb. test monofilament line Cortland Line Company SLB16
Agarose I Amresco 0710
Argon laser LASOS Lasertechnik GmbH LGN 3001
Calcium chloride Sigma-Aldrich C8106
Capillary tubing, 100 mm, 0.9 mm ID FHC 30-31-0
Clove oil Hilltech Canada, Inc. HB-102
High vacuum grease Dow Corning 2021846-0807
Isotemp dry-bath incubator Fisher Scientific 2050FS
Laser scanning microscope Carl Zeiss AG LSM 710
Magnesium sulfate hexahydrate Sigma-Aldrich 230391
Microscope cover glass, 22×22-1 Fisher Scientific 12-542-B
Microscope cover glass, 24×60-1 Fisher Scientific 12-545-M
Potassium chloride Fisher Scientific M-11321
Potassium phosphate dibasic Sigma-Aldrich P3786
Sodium chloride Fisher Scientific M-11624
Sodium phosphate dibasic Sigma-Aldrich S7907
TempController 2000-2 PeCon GmbH
Tricaine-S Western Chemical, Inc.

Referenzen

  1. Trainor, P. A., Melton, K. R., Manzanares, M. Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int. J. Dev. Biol. 47, 541-553 (2003).
  2. Eberhart, J. K., Swartz, M. E., Crump, J. G., Kimmel, C. B. Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development. 133, 1069-1077 (2006).
  3. Wada, N., et al. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development. 132, 3977-3988 (2005).
  4. Roessler, E., et al. Mutations in the human sonic hedgehog gene cause holoprosencephaly. Nat. Genet. 14, 357-360 (1996).
  5. Jeong, J., Mao, J., Tenzen, T., Kottmann, A. H., McMahon, A. P. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 18, 937-951 (2004).
  6. Hu, D., Marcucio, R. S. A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development. 136, 107-116 (2009).
  7. Cordero, D., et al. Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J. Clin. Invest. 114, 485-494 (2004).
  8. Westphal, H., Beachyr, P. A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 383, 3 (1996).
  9. Moore-Scott, B. A., Manley, N. R. Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev. Biol. 278, 323-335 (2005).
  10. Swartz, M. E., Nguyen, V., McCarthy, N. Q., Eberhart, J. K. Hh signaling regulates patterning and morphogenesis of the pharyngeal arch-derived skeleton. Dev. Biol. 369, 65-75 (2012).
  11. Balczerski, B., et al. Analysis of Sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the growth but not dorsoventral patterning of jaw skeletal precursors. Dev. Biol. , (2011).
  12. Nie, X., Luukko, K., Kettunen, P. BMP signalling in craniofacial development. Int. J. Dev. Biol. 50, 511-521 (2006).
  13. Alexander, C., et al. Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development. 138, 5135-5146 (2011).
  14. Zuniga, E., Rippen, M., Alexander, C., Schilling, T. F., Crump, J. G. Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development. 138, 5147-5156 (2011).
  15. Swartz, M. E., Sheehan-Rooney, K., Dixon, M. J., Eberhart, J. K. Examination of a palatogenic gene program in zebrafish. Dev. Dyn. 240, 2204-2220 (2011).
  16. Eberhart, J. K., et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat. Genet. 40, 290-298 (2008).
  17. Soriano, P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development. 124, 2691-2700 (1997).
  18. Tallquist, M. D., Soriano, P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development. 130, 507-518 (2003).
  19. Ho, L., Symes, K., Yordan, C., Gudas, L. J., Mercola, M. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mech. Dev. 48, 165-174 (1994).
  20. Liu, L., Korzh, V., Balasubramaniyan, N. V., Ekker, M., Ge, R. Platelet-derived growth factor A (pdgf-a) expression during zebrafish embryonic development. Dev. Genes Evol. 212, 298-301 (2002).
  21. Westerfield, M. . The Zebrafish Book; A guide for the laboratory use of zebrafish (Brachydanio rerio). , (1993).
  22. Sheehan-Rooney, K., Swartz, M. E., Lovely, C. B., Dixon, M. J., Eberhart, J. K. Bmp and Shh Signaling Mediate the Expression of satb2 in the Pharyngeal Arches. PloS one. 8, e59533 (2013).
  23. Varga, Z. M., et al. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development. 128, 3497-3509 (2001).
  24. Grush, J., Noakes, D. L. G., Moccia, R. D. The efficacy of clove oil as an anesthetic for the zebrafish, Danio rerio. 1, 46-53 (2004).
  25. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676-682 (2012).
  26. Crump, J. G., Maves, L., Lawson, N. D., Weinstein, B. M., Kimmel, C. B. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development. 131, 5703-5716 (2004).
  27. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310 (1995).
  28. Alexandre, P., Reugels, A. M., Barker, D., Blanc, E., Clarke, J. D. Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat. Neurosci. 13, 673-679 (2010).
check_url/de/51190?article_type=t

Play Video

Diesen Artikel zitieren
McGurk, P. D., Lovely, C. B., Eberhart, J. K. Analyzing Craniofacial Morphogenesis in Zebrafish Using 4D Confocal Microscopy. J. Vis. Exp. (83), e51190, doi:10.3791/51190 (2014).

View Video