Summary

Analisando Craniofacial morfogênese em Zebrafish Usando 4D microscopia confocal

Published: January 30, 2014
doi:

Summary

Time-lapse confocal de imagem é uma poderosa técnica útil para caracterizar o desenvolvimento embrionário. Aqui, descrevemos a metodologia e caracterizar morfogênese craniofacial no tipo selvagem, bem como PDGFRA, smad5, e SMO embriões mutantes.

Abstract

Imagiologia de lapso de tempo é uma técnica que permite a observação directa do processo de morfogénese, ou a geração de forma. Devido à sua claridade óptica e responsabilidade para com a manipulação genética, o embrião de peixe-zebra tornou-se um organismo modelo popular com a qual para realizar a análise de lapso de tempo de morfogênese em embriões vivos. Imagem confocal de um embrião do peixe-zebra vivos exige que um tecido de interesse é persistentemente marcado com um marcador fluorescente, tal como um transgene ou corante injectado. O processo exige que o embrião é anestesiado e mantido no lugar, de tal maneira que o desenvolvimento prossegue normalmente saudável. Parâmetros para a imagem deve ser ajustado para ter em conta o crescimento tridimensional e para equilibrar as exigências da resolução de células individuais ao obter fotos rápidas de desenvolvimento. Os nossos resultados demonstram a capacidade de executar a longo prazo in vivo de imagens de embriões de peixes-zebra marcados com fluorescência para detectar e comportamentos de tecidos em variadasda crista neural cranial que causam anomalias craniofaciais. Atrasos de desenvolvimento causados ​​pela anestesia e montagem são mínimos, e os embriões são ileso pelo processo. Embriões temporizadoP fotografada pode ser devolvido ao meio líquido e subsequentemente visualizados ou fixado em pontos mais tarde no desenvolvimento. Com um aumento da abundância de linhas de peixes-zebra transgénicos e mapeamento de destino bem caracterizados e as técnicas de transplante, imagiologia qualquer tecido desejado é possível. Como tal, de lapso de tempo em imagem in vivo combina poderosamente com métodos genéticos peixe-zebra, incluindo análises de embriões mutantes e microinjetados.

Introduction

Morfogênese craniofacial é um processo multi-passo complexo que requer interações coordenadas entre vários tipos de células. A maior parte do esqueleto craniofacial é derivada a partir de células da crista neural, muitas das quais devem migrar a partir do tubo neural dorsal em estruturas transientes chamados arcos faringe 1. Tal como acontece com muitos tecidos, morfogênese do esqueleto craniofacial é mais complicado do que pode ser entendido por imagens estáticas de embriões em pontos específicos de tempo de desenvolvimento. Embora seja para realizar demorado, in vivo, a microscopia de lapso de tempo proporciona uma aparência contínua em células e tecidos de um embrião em desenvolvimento. Cada imagem em uma série de lapso de tempo dá contexto para os outros, e ajuda a um movimento em direção investigador deduzir por que um fenômeno ocorre, em vez de deduzir o que está ocorrendo naquele momento.

Na imagem in vivo é, portanto, uma poderosa ferramenta descritiva de abordagens experimentais paradesconstruir os caminhos que guiam morfogênese. O Danio rerio peixe-zebra é um modelo genético popular de desenvolvimento embrionário dos vertebrados, e é particularmente bem adaptado para imagiologia in vivo de morfogénese. Modern, métodos convenientes para transgenia e genômica modificação estão avançando rapidamente o número de ferramentas disponíveis para pesquisadores peixe-zebra. Estas ferramentas de melhorar os métodos já robustos para manipulação genética e microscopia. Imagem in vivo de praticamente qualquer tecido em quase qualquer contexto genético desejado é mais próximo da realidade do que a fantasia.

Movimentos morfogenéticos dos arcos faríngeos são guiados por sinalização interações entre a crista neural e do epitélio adjacente, tanto ectoderma e endoderma. Existem inúmeras moléculas sinalizadoras expressas pelo epitélio que são necessários para accionar a morfogénese dos elementos esqueléticos craniofaciais. Entre essas moléculas sinalizadoras, Sonic Hedgehog (Shh) é extremamente importante fou desenvolvimento craniofacial 2-8. Shh é expressa tanto pelo ectoderma oral e faringe endoderme 2,6,9,10. A expressão de Shh em endoderme regula movimentos morfogenéticas dos arcos 10, padronização de crista neural dentro dos arcos 10, e o crescimento do esqueleto craniofacial 11.

Bmp sinalização também é extremamente importante para o desenvolvimento craniofacial 12 e pode alterar a morfogênese dos arcos faríngeos. Sinalização Bmp regula dorsal / ventral padronização de crista dentro dos arcos faríngeos 13,14. Rompimento de smad5 em zebrafish provoca graves defeitos palatais e um fracasso das cartilagens de Meckel para fundir de forma adequada na linha média 15. Além disso, os mutantes também exibem reduções e fusão dos elementos de cartilagem ventrais, com o 2 o, 3 o, e, por vezes, os elementos do arco 4 º faringe fundidos na linha média 15. Estas fusões sugerem fortemente que a sinalização BMP dirige a morfogênese destes elementos da faringe.

Sinalização PDGF é necessário para o desenvolvimento craniofacial, mas tem papéis desconhecidos em arco faríngeo morfogênese. Ambos rato e mutantes PDGFRA peixe-zebra tem profunda clefting terço médio da face 16-18. Pelo menos, no peixe-zebra este clefting média facial é devido a uma falha de migração de células da crista neural apropriado 16. Células da crista neural continuam a expressar PDGFRA depois de terem entrado os arcos faríngeos. Além disso, os ligandos de PDGF são expressos por epitélios facial e dentro dos arcos da faringe 16,19,20, assim sinalização PDGF pode também desempenhar um papel importante na morfogénese dos arcos da faringe após a migração. No entanto, as análises da morfogênese dos arcos faríngeos em mutantes PDGFRA não foram realizadas.

Aqui, nós demonstramos em microscopia confocal in vivo de pharyngulum estágio zebrafish transgênicos e descrever a morfogênese dos arcos faríngeos dentro deste período. Demonstramos mais comportamentos de tecido que são afetados por mutações que perturbam a BMP, PDGF, e Shh vias de sinalização.

Protocol

1. Pecuária e Mutant alelos Levantar e produzir peixe-zebra como descrito 21. Alelos mutantes Zebrafish utilizados neste estudo foram PDGFRA b1059 16, B1100 smad5 22, e b577 smo 23. Fontes para essas cepas zebrafish incluem Zirc. 2. Preparação de Soluções e Implementos Nota: Todas as soluções e as ferramentas podem ser feitas com antecedência e armazenado para uso futuro. …

Representative Results

Em embriões do tipo selvagem, seguindo população crista neural, os arcos da faringe alongar ao longo dos anterior / posterior e dorsal / ventral eixos enquanto se move em uma direção rostral (Filme 1). Aos 30 horas após a fertilização (hpf), a duração anterior / posterior do primeiro arco faríngeo é entre 1,8-1,9 vezes o seu dorsal / altura ventral. Dorsal / alongamento ventral procede de forma constante, mais rápido do que a extensão anterior / posterior até 36,5 hpf. A partir daqui, dor…

Discussion

Microscopia confocal Time-lapse é uma ferramenta poderosa para a análise do desenvolvimento. Aqui, nós demonstramos a utilidade do método no estudo da faringe arco morfogênese no peixe-zebra, que são mutantes por vias de sinalização importantes usando um transgênico que rotula células da crista neural. Além do nível de tecido análises, análises de lapso de tempo também são aplicáveis ​​para análises de uma escala celular 28. Muitos métodos de peixe-zebra amplamente utilizados também po…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Agradecemos Melissa Griffin e Jenna Rozacky para seu especialista em cuidados de peixe. PDM graças EGN para escrever assistência, generosidade e paciência. Este trabalho foi financiado pelo NIH / NIDCR R01DE020884 para JKE.

Materials

6 lb. test monofilament line Cortland Line Company SLB16
Agarose I Amresco 0710
Argon laser LASOS Lasertechnik GmbH LGN 3001
Calcium chloride Sigma-Aldrich C8106
Capillary tubing, 100 mm, 0.9 mm ID FHC 30-31-0
Clove oil Hilltech Canada, Inc. HB-102
High vacuum grease Dow Corning 2021846-0807
Isotemp dry-bath incubator Fisher Scientific 2050FS
Laser scanning microscope Carl Zeiss AG LSM 710
Magnesium sulfate hexahydrate Sigma-Aldrich 230391
Microscope cover glass, 22×22-1 Fisher Scientific 12-542-B
Microscope cover glass, 24×60-1 Fisher Scientific 12-545-M
Potassium chloride Fisher Scientific M-11321
Potassium phosphate dibasic Sigma-Aldrich P3786
Sodium chloride Fisher Scientific M-11624
Sodium phosphate dibasic Sigma-Aldrich S7907
TempController 2000-2 PeCon GmbH
Tricaine-S Western Chemical, Inc.

Referenzen

  1. Trainor, P. A., Melton, K. R., Manzanares, M. Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution. Int. J. Dev. Biol. 47, 541-553 (2003).
  2. Eberhart, J. K., Swartz, M. E., Crump, J. G., Kimmel, C. B. Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development. 133, 1069-1077 (2006).
  3. Wada, N., et al. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development. 132, 3977-3988 (2005).
  4. Roessler, E., et al. Mutations in the human sonic hedgehog gene cause holoprosencephaly. Nat. Genet. 14, 357-360 (1996).
  5. Jeong, J., Mao, J., Tenzen, T., Kottmann, A. H., McMahon, A. P. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 18, 937-951 (2004).
  6. Hu, D., Marcucio, R. S. A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development. 136, 107-116 (2009).
  7. Cordero, D., et al. Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. J. Clin. Invest. 114, 485-494 (2004).
  8. Westphal, H., Beachyr, P. A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 383, 3 (1996).
  9. Moore-Scott, B. A., Manley, N. R. Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev. Biol. 278, 323-335 (2005).
  10. Swartz, M. E., Nguyen, V., McCarthy, N. Q., Eberhart, J. K. Hh signaling regulates patterning and morphogenesis of the pharyngeal arch-derived skeleton. Dev. Biol. 369, 65-75 (2012).
  11. Balczerski, B., et al. Analysis of Sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the growth but not dorsoventral patterning of jaw skeletal precursors. Dev. Biol. , (2011).
  12. Nie, X., Luukko, K., Kettunen, P. BMP signalling in craniofacial development. Int. J. Dev. Biol. 50, 511-521 (2006).
  13. Alexander, C., et al. Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development. 138, 5135-5146 (2011).
  14. Zuniga, E., Rippen, M., Alexander, C., Schilling, T. F., Crump, J. G. Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development. 138, 5147-5156 (2011).
  15. Swartz, M. E., Sheehan-Rooney, K., Dixon, M. J., Eberhart, J. K. Examination of a palatogenic gene program in zebrafish. Dev. Dyn. 240, 2204-2220 (2011).
  16. Eberhart, J. K., et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat. Genet. 40, 290-298 (2008).
  17. Soriano, P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development. 124, 2691-2700 (1997).
  18. Tallquist, M. D., Soriano, P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development. 130, 507-518 (2003).
  19. Ho, L., Symes, K., Yordan, C., Gudas, L. J., Mercola, M. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mech. Dev. 48, 165-174 (1994).
  20. Liu, L., Korzh, V., Balasubramaniyan, N. V., Ekker, M., Ge, R. Platelet-derived growth factor A (pdgf-a) expression during zebrafish embryonic development. Dev. Genes Evol. 212, 298-301 (2002).
  21. Westerfield, M. . The Zebrafish Book; A guide for the laboratory use of zebrafish (Brachydanio rerio). , (1993).
  22. Sheehan-Rooney, K., Swartz, M. E., Lovely, C. B., Dixon, M. J., Eberhart, J. K. Bmp and Shh Signaling Mediate the Expression of satb2 in the Pharyngeal Arches. PloS one. 8, e59533 (2013).
  23. Varga, Z. M., et al. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development. 128, 3497-3509 (2001).
  24. Grush, J., Noakes, D. L. G., Moccia, R. D. The efficacy of clove oil as an anesthetic for the zebrafish, Danio rerio. 1, 46-53 (2004).
  25. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676-682 (2012).
  26. Crump, J. G., Maves, L., Lawson, N. D., Weinstein, B. M., Kimmel, C. B. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning. Development. 131, 5703-5716 (2004).
  27. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310 (1995).
  28. Alexandre, P., Reugels, A. M., Barker, D., Blanc, E., Clarke, J. D. Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat. Neurosci. 13, 673-679 (2010).
check_url/de/51190?article_type=t

Play Video

Diesen Artikel zitieren
McGurk, P. D., Lovely, C. B., Eberhart, J. K. Analyzing Craniofacial Morphogenesis in Zebrafish Using 4D Confocal Microscopy. J. Vis. Exp. (83), e51190, doi:10.3791/51190 (2014).

View Video