Summary

多囊卵巢综合征小鼠模型中肝葡萄糖产生的评价

Published: March 05, 2022
doi:

Summary

本研究描述了在多囊卵巢综合征小鼠模型中直接测量肝葡萄糖产生的方法是使用稳定的同位素葡萄糖示踪剂 通过 尾静脉在空腹和富葡萄糖状态中串联。

Abstract

多囊卵巢综合征(PCOS)是一种常见疾病,可导致葡萄糖代谢紊乱,如胰岛素抵抗和葡萄糖耐受。葡萄糖代谢失调是该疾病的重要表现,是其发病机制的关键。因此,涉及评估PCOS中葡萄糖代谢的研究至关重要。很少有研究使用非放射性葡萄糖示踪剂直接在PCOS模型中量化肝葡萄糖的产生。在本研究中,我们讨论了通过气相色谱 – 质谱法(GCMS)测量[6,6-2H2]葡萄糖(一种稳定的同位素葡萄糖示踪剂)的M + 2富集来量化PCOS小鼠模型中肝葡萄糖产生速率的分步说明。该过程涉及创建稳定的同位素葡萄糖示踪剂溶液,使用尾静脉导管放置和在同一小鼠中同时在空腹和富葡萄糖状态下输注葡萄糖示踪剂。在GCMS中使用五乙酸衍生物测量[6,6-2H2]葡萄糖的富集。该技术可应用于涉及直接测量肝葡萄糖产生速率的各种研究。

Introduction

多囊卵巢综合征 (PCOS) 是一种常见疾病,见于 12%-20% 的育龄妇女12。它是一种复杂的疾病,导致表型多发性变异,包括多囊卵巢、月经不调和高雄激素血症的临床或实验室证据,通常在女性符合三个标准中的两个时诊断出来3。PCOS的一个主要方面,也是其发病机制的一个关键因素,是在患有该疾病的女性中发现的代谢紊乱。患有PCOS的女性胰岛素抵抗,葡萄糖不耐受,肥胖和代谢综合征的发生率较高3456。胰岛素抵抗不仅是该疾病的一种表现,而且被认为通过增强卵巢中黄体生成素的作用来促进其发病机制,从而导致雄激素产生增加78。胰岛素抵抗被认为有几种可能的起源,但研究表明这可能是由于胰岛素受体信号传导的异常模式910。研究已经使用高胰岛素血症 – 正常血糖钳夹的金标准技术评估了PCOS患者的胰岛素抵抗1112131415。与对照组相比,无论BMI如何,患有PCOS的女性具有更高水平的胰岛素抵抗。胰岛素对葡萄糖产生的控制在导致葡萄糖产生过量的胰岛素抵抗性疾病中受损。例如,糖尿病患者的糖异生率增加,糖原溶解抑制受损16。此外,在糖尿病大鼠中观察到葡萄糖产生的抑制受损17。虽然钳夹研究可以测量胰岛素抵抗,但PCOS中很少有研究专注于直接测量空腹和进食状态下的葡萄糖产生。这需要使用非放射性同位素葡萄糖示踪剂输注和 通过 质谱法进行测量。

动物模型已被广泛用于PCOS研究。瘦型和肥胖型 PCOS 小鼠模型都是通过产前、青春期前或青春期后施用雄激素来创建的18。啮齿动物PCOS模型也显示出与各自对照组相比的代谢差异。我们实验室先前的数据显示PCOS小鼠模型(瘦和肥胖)中的葡萄糖耐量测试异常(GTT),与人类PCOS文献一致19。使用瘦肉和肥胖的动物模型可以进一步研究代谢差异。具体而言,该模型允许使用同位素葡萄糖示踪剂直接评估葡萄糖产生速率。最常用的稳定同位素葡萄糖示踪剂之一是[6,6-2H2]葡萄糖。[6,6-2H2]葡萄糖富集可以使用前面描述的五乙酸衍生物进行测量20

在这项研究中,我们的目标是使用同位素葡萄糖输注测量PCOS小鼠在空腹和富葡萄糖状态下肝葡萄糖的产生率。这些技术可以应用于涉及葡萄糖动力学的广泛实验。

Protocol

所有动物程序均由贝勒医学院的机构动物护理和使用委员会(IACUC)批准。 1. [6,6-2H2]葡萄糖的制备 手术前一天,在生理盐水中制备稳定的同位素葡萄糖示踪剂。对于该实验,使用[6,6-2H2]葡萄糖作为示踪剂来测量血浆葡萄糖出现率。注意:在本实验中,测量了空腹和富葡萄糖条件下的葡萄糖产生,因此在两种不同的制?…

Representative Results

使用先前描述的同位素稀释方程,使用五乙酸衍生物从空腹和富葡萄糖条件下的M + 2富集[6,6-2H2]葡萄糖计算总血浆葡萄糖率(葡萄糖Ra)21。在稳态条件下,假设葡萄糖的出现速率等于葡萄糖的消失速率。对照组,空腹6 h后总葡萄糖Ra为19.98±2.53 mg/(kg·min),富糖条件下总葡萄糖Ra为25.80±1.76 mg/(kg·min)。使用上面列出的计算,空腹6小时后GPR为19…

Discussion

高血糖和葡萄糖代谢/稳态异常是 PCOS 的特征。血糖水平通过饮食中的葡萄糖和葡萄糖 通过 糖原分解和糖异生和糖原生成的组合来维持,在激素和酶的控制下。肝葡萄糖的产生因循环葡萄糖水平升高而受到抑制。在葡萄糖代谢异常的疾病中,葡萄糖产生的抑制调节受到损害,导致高血糖。虽然许多研究表明,在PCOS动物模型中间接测量了肝葡萄糖的产生,但很少有人直接测量肝葡萄糖的产生…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了贝勒医学院(ALG)妇产科系的培训资助以及美国国立卫生研究院为CSB,SC和JM提供的R-01研究补助金(补助金编号DK114689)的支持。

Materials

0.9% sodium chloride solution McKesson 275595
10 mL BD Luer-Lok tip syringe VWR 75846-756 Two syringes per animal (one for isotopic glucose solution, one for glucose-rich isotopic solution)
1-inch clear transpore tape 3M 70200400169
1-inch Labeling tape Fisher GS07F161BA Brand is example
5 mL syringe containing heparanized saline flush McKesson 191-MIH-2235 One can also prepare a heparin flush solution (10 units/mL heparin in 0.9% sodium chloride)
5 mm Medipoint Goldenrod animal lancets Fisher Scientific NC9891620 5 mm if animal is between 2 and 6 months
Acetone Sigma-Aldrich 650501
Advanced hot plate stirrer VWR 97042-602 Brand is example
BD 27 gauge 0.5 inch needles Health Warehouse A283952
BD 30 gauge 0.5 inch needles Medvet 305106
BD Intramedic Polyethylene (PE) tubing 0.28 mm ID x 0.61 mm VWR 63019-004
BD Intramedic Polyethylene (PE) tubing 0.28 mm ID x 0.61 mm VWR 63019-004
Beaker, 1000 mL Any brand
Caging pellets
Clear VOA glass vials with closed-top cap Fisher Scientific 05-719-120 For storage of acetone and blood draw samples
Copper toothless alligator clamp for tourniquet Amazon Any Brand; smooth toothless alligator clips made of solid copper
D-(+)-glucose >99.5% Sigma-Aldrich G8270
D-glucose (6,6-D2, 99%) Cambridge Isotope Laboratories, Inc. DLM-349-PK
Dow Corning silastic tubing 0.3 mm ID x 0.64 mm OD VWR 62999-042
Magnifying glass Amazon Any brand; similar to LANCOSC Magnifying Glass with Light and Stand
Microbalance Ohaus Adventurer Pro AV264C Any similar model with 0.0001g accuracy can be used
Nalgene bottle, 500 mL Sigma-Aldrich B0158-12EA Or any Similar brand; saw in half (including lid) and cut tail-sized notch in the bottom
PHD Ultra multi-syringe pump Harvard Apparatus 70-3024A
Plexiglass sheet Any brand; to stabalize mouse during catheter insertion
Plexiglass sheets and dividers Any brand; used to cage mice during infusion

Referenzen

  1. March, W. A., et al. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Human Reproduction. 25 (2), 544-551 (2009).
  2. Yildiz, B. O., et al. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Human Reproduction. 27 (10), 3067-3073 (2012).
  3. . Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility. 81 (1), 19-25 (2004).
  4. Goodarzi, M. O., et al. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nature Reviews. Endocrinology. 7 (4), 219-231 (2011).
  5. Azziz, R. Introduction: Determinants of polycystic ovary syndrome. Fertility and Sterility. 106 (1), 4-5 (2016).
  6. Baskind, N. E., Balen, A. H. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Practice and Research. Clinical Obstetrics & Gynaecology. 37, 80-97 (2016).
  7. Burghen, G. A., Givens, J. R., Kitabchi, A. E. Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. The Journal of Clinical Endocrinology and Metabolism. 50 (1), 113-116 (1980).
  8. Bremer, A. A. Polycystic ovary syndrome in the pediatric population. Metabolic Syndrome and Related Disorders. 8 (5), 375-394 (2010).
  9. Dunaif, A., et al. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. The Journal of Clinical Investigation. 96 (2), 801-810 (1995).
  10. Højlund, K., et al. Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment. Diabetes. 57 (2), 357-366 (2008).
  11. Moghetti, P., et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism. 98 (4), 628-637 (2013).
  12. Ovalle, F., Azziz, R. Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. Fertility and Sterility. 77 (6), 1095-1105 (2002).
  13. Dunaif, A., et al. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 38 (9), 1165-1174 (1989).
  14. Hutchison, S. K., et al. Effects of exercise on insulin resistance and body composition in overweight and obese women with and without polycystic ovary syndrome. The Journal of Clinical Endocrinology Metabolism. 96 (1), 48-56 (2011).
  15. Stepto, N. K., et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Human Reproduction. 28 (3), 777-784 (2013).
  16. Basu, R., Schwenk, W. F., Rizza, R. A. Both fasting glucose production and disappearance are abnormal in people with "mild" and "severe" type 2 diabetes. American Journal of Physiology, Endocrinology and Metabolism. 287 (1), 55-62 (2004).
  17. Blesson, C. S., et al. Sex dependent dysregulation of hepatic glucose production in lean Type 2 diabetic rats. Frontiers in Endocrinology. 10, 538 (2019).
  18. Caldwell, A. S., et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 155 (8), 3146-3159 (2014).
  19. Chappell, N. R., et al. Prenatal androgen induced lean PCOS impairs mitochondria and mRNA profiles in oocytes. Endocrine Connections. 9 (3), 261-270 (2020).
  20. Chacko, S. K., et al. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide. Journal of Applied Physiology. 104 (4), 944-951 (2008).
  21. Bier, D. M., et al. Measurement of "true" glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes. 26 (11), 1016-1023 (1977).
  22. Chacko, S. K., Sunehag, A. L. Gluconeogenesis continues in premature infants receiving total parenteral nutrition. Archives of Disease in Childhood. Fetal and Neonatal Edition. 95 (6), 413-418 (2010).
  23. Chacko, S. K., et al. Effect of ghrelin on glucose regulation in mice. American Journal of Physiology, Endocrinology and Metabolism. 302 (9), 1055-1062 (2012).
  24. Marini, J. C., Lee, B., Garlick, P. J. Non-surgical alternatives to invasive procedures in mice. Laboratory Animals. 40 (3), 275-281 (2006).
  25. Jacobs, J. D., Hopper-Borge, E. A. Carotid artery infusions for pharmacokinetic and pharmacodynamic analysis of taxanes in mice. Journal of Visualized Experiments: JoVE. (92), e51917 (2014).
  26. Ayala, J. E., et al. Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice. Journal of Visualized Experiments: JoVE. (57), e3188 (2011).
  27. Kmiotek, E. K., Baimel, C., Gill, K. J. Methods for Intravenous Self Administration in a Mouse Model. Journal of Visualized Experiments: JoVE. (70), e3739 (2012).
  28. Marini, J. C., Lee, B., Garlick, P. J. In vivo urea kinetic studies in conscious mice. The Journal of Nutrition. 136 (1), 202-206 (2006).
  29. Choukem, S. -. P., Gautier, J. -. F. How to measure hepatic insulin resistance. Diabetes Metabolism. 34 (6), 664-673 (2008).
check_url/de/62991?article_type=t

Play Video

Diesen Artikel zitieren
Gannon, A. L., Chacko, S. K., Didelija, I. C., Marini, J. C., Blesson, C. S. Evaluation of Hepatic Glucose Production in a Polycystic Ovary Syndrome Mouse Model. J. Vis. Exp. (181), e62991, doi:10.3791/62991 (2022).

View Video