Summary

在激光诱导轴突病变张力释放测量评估轴突在Piconewton和毫秒级的分辨率对基材的附着力

Published: May 27, 2013
doi:

Summary

我们测量了张力释放部分病变进行附着膜的轴突的光学捕获探针上的的同时力显微镜测量用激光剥离器通过在一个轴突。所开发的实验协议评估轴突的培养基材的粘附性。

Abstract

一个发展中的神经元网络的功能连接的形成是受外部线索。神经突起生长发育中的神经元受到化学和机械信号的机制,感知和响应机械信号却知之甚少。阐明细胞的成熟过程中的力的作用,使支架的设计,可以促进细胞粘附和细胞骨架耦合到衬底,因此提高损伤后再生的能力,不同的神经元类型。

在这里,我们描述了一种方法,同时力光谱测量应用在激光诱导的细胞病变。测量张力释放部分病变轴突附着膜的轴突的光学捕获探针通过同时干涉跟踪。我们的实验协议检测的张力释放与piconewton灵敏度和动态的张力释放毫秒级的时间分辨率。因此,它提供了一个高分辨率的方法来研究细胞和基片之间的机械耦合,可以调制的药物治疗和/或通过在基板的不同的力学性能。

Introduction

光学显微镜是一种较少侵入性的成像系统,可观察活细胞。随着开采的辐射压力(如在光学镊子1),或高能量光子通量(在激光剥离器2)的影响,如,这种技术被扩展到纳米操纵。的光学成像系统,可视化和操纵子的细胞的目标3。提供精确的控制。与此同时,得益于精确标定交付的激光功率,光工具完成软或侵入性的样品操作,以前所未有的重现性。

几个实验室的集成,在相同的实验装置,光学镊子和激光剥离器,以消融细胞器4,不同的细胞融合在一起5星 ,或光学驱动的货物6,7刺激细胞。虽然光镊后校准的光刚度,以便的作用力细胞一个piconewton规模的控制,激光剥离系统可以调节光学操纵,单细胞器或亚细胞结构的解剖消融范围从照片蒸发膜。然而,激光剥离校准依赖于光学操纵实体与定性评估的能量传递到样品,主要是基于图像分析说明形态的变化而引起的标本8。在该方法中,我们将演示如何执行力在一个发展中的神经元轴突解剖激光光谱测量,量化,上piconewton规模,产生的力平衡,改变细胞骨架结构的亚细胞室9。培养神经元坚持为基材,并在开发过程中两极化。极化阶段发生在第一天的体外 。在第二阶段的偏振,的EXTRUD之一的神经突起变长,它会分化成为轴突10。轴突生长锥伸长响应牵引力先前已为蓝本由Dennerl的模型11。最近,这种模式被扩展12包括突起粘附到细胞外基质底物的作用。这种生物物理模型,实验观察13后提出,表明拉力沿神经轴突生长锥,传播,调制焦点粘连基板。同样,轴突病变向细胞体中传播产生了一个局部的张力释放。因此,我们建议,测量等发布张力之间的病变沿轴突和胞体的位置,提供阻尼结果不受影响的焦点粘连的可能性进行评估。

我们校准所需的能量的光子通量的激光剥离器来控制的程度,造成了轴突damagE,完全横断局部病变。校准之后,我们重复部分病变几个分化的神经元的轴突和发展的协议的张力解除量化,从而得到一个量化参数估计的轴突到基板14的粘附。

在目前的工作中,我们详细描述了所开发的协议,即代表了精确的实验程序评估和比较与piconewton灵敏度的轴突对基材的附着力,在不同的实验条件下,如化学处理14,或不同类型的细胞培养支持。

Protocol

1。光学设置整个光学系统的前面描述的15。简单地说,是根据光镊系统镱连续波(CW)光纤激光器1064 nm处(IPG激光GmbH公司)。空间光调制器(SLM)(LCOS-SLM模型X10468-07 – 滨松)传入的红外激光束来控制培养皿上由计算机生成的全息图捕获焦点的位置不同阶段。蓝镊子软件免费提供的(网页连结设备表)产生全息图投射在空间光调制器。武力干涉仪光谱测量,四象限光?…

Representative Results

细胞产生牵引力在基板上,其焦点粘连。细胞骨架元素产生的力处于平衡状态的培养基材的反作用力。激光诱导后的神经突的病变,有些紧张的细胞骨架电缆被破坏平衡的张力被释放,因为基板的附着力的反作用力消除。张力释放部分地分布于未受影响的粘着斑,胎圈附着在细胞膜上,保持在一个光阱,测量等释放的部分未抵消基板锚定细胞的细胞骨架元素(见示意图图1) 。 <p c…

Discussion

我们报告了这项工作的定量方法比较突起文化基板的附着力,同时执行力时的光谱测量激光诱导的细胞病变。测得的张力释放基板的细胞粘附的程度有关:细胞具有较高的粘着斑的数目应释放张力小。测量张力的释放在piconewtons方面提供的物理量评价轴突粘着培养支持在不同的实验条件下14。

几个实验室与光镊系统集成的激光剥离,采用独特的光学设计23。我?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

阿尔贝托Guiggiani开发实时控制的系统,埃弗利纳Chieregatti和花子对马岛见地的讨论,普鲁佐和亚历山德罗·贾科莫Parodi的定制的电子产品和软件的发展,克劳迪娅Chiabrera和滨海南尼他们在细胞培养制备的专家建议和援助。

Materials

      REAGENTS
Polymer microspheres, Ø 4 μm, COOH coated Bangs laboratories PC05N/6700  
PolyLink Protein Coupling Kit Polyscience 19539  
      EQUIPMENT
IR laser IPG Laser GmbH YLM-5-SC-LP ytterbium continuous wave (CW) fiber laser operating at 1064 nm, with linear polarization
Spatial light modulator Hamamatsu LCOS-SLM 10468-07  
Blue-tweezers software Optics group, University of Glasgow Free downloadable software http://www.physics.gla.ac.uk/Optics/projects/tweezers/slmcontrol/
ImageJ NIH Free downloadable software http://rsbweb.nih.gov/ij/
QPD Thorlabs S5980 with C5460SPL 6041 board Four quadrant photo-diode to measure x, y trapped probe displacement
PD Teem Photonics PDA100A-EC Photodiode to measure z trapped probe displacement
nano-Pulse UV laser AA-optoelctronics PNV-001525-040 Pulsed UVA laser, pulse length 400 ps
Acoustic Optic Modulator Olympus MQ110-A3-UV, 355 nm fused silica  
Upright microscope Andor BX51 Equipped with a 60X, 0.9 NA, water dipping objective
CCD Warner Instruments V887ECSUVB EMCCD  
Peltier device Physic Instruments QE1 resistive heating with TC-344B dual channel heater controller  
Microscope stage: micro+piezo stage National Instruments Three linear stages M-126.CG1 carrying a separate 3-axis piezoelectric nano-positioning stage P-733.3DD  
Daq   NI PCI-6229 Acquiring the x, y, z position of the trapped probe, and sending feedback loop signals to microscope stage
Linux Real Time Application Interface (RTAI) machine     Real time feedback loop system, to control stage position, developed on a dedicated PC desktop

References

  1. Ashkin, A., Dziedzic, J. M. Optical Trapping and Manipulation of Viruses and Bacteria. Science. 235, 1517-1520 (1987).
  2. Berns, M. W., Aist, J., et al. Laser microsurgery in cell and developmental biology. Science. 213, 505-513 (1981).
  3. Nguyen, Q. T., Olson, E. S., et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc. Natl. Acad. Sci. U.S.A. 107, 4317-4322 (2010).
  4. Stiess, M., Maghelli, N., et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science. 327, 704-707 (2010).
  5. Steubing, R. W., Cheng, S., Wright, W. H., Numajiri, Y., Berns, M. W. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry. 12, 505-510 (1991).
  6. Pinato, G., Raffaelli, T., D’Este, E., Tavano, F., Cojoc, D. Optical delivery of liposome encapsulated chemical stimuli to neuronal cells. J. Biomed. Opt. 16, 095001-095004 (2011).
  7. Kress, H., Park, J. G., et al. Cell stimulation with optically manipulated microsources. Nat. Methods. 6, 905-909 (2009).
  8. Berns, M. W. A history of laser scissors (microbeams). Methods Cell Biol. 82, 1-58 (2007).
  9. Difato, F., Dal, M. M., et al. Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks. Journal of Biomedical Optics. 16, 051306_1-051306_8 (2011).
  10. Goslin, K., Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507-1516 (1989).
  11. Dennerll, T. J., Lamoureux, P., Buxbaum, R. E., Heidemann, S. R. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109, 3073-3083 (1989).
  12. O’Toole, M., Miller, K. E. The role of stretching in slow axonal transport. Biophys. J. 100, 351-360 (2011).
  13. O’Toole, M., Lamoureux, P., Miller, K. E. A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94, 2610-2620 (2008).
  14. Difato, F., Tsushima, H., et al. The formation of actin waves during regeneration after axonal lesion is enhanced by BDNF. Nature Scientific Reports. 1 (183), (2011).
  15. Difato, F., Schibalsky, L., Benfenati, F., Blau, A. Integration of optical manipulation and electrophysiological tools to modulate and record activity in neural networks. International Journal of Optomechatronics. , 191-216 (2011).
  16. Guiggiani, A., Torre, B., et al. Long-range and long-term interferometric tracking by static and dynamic force-clamp optical tweezers. Opt. Express. 19, 22364-22376 (2011).
  17. Guiggiani, A., Basso, M., Vassalli, M., Difato, F. RealTime Suite: a step-by-step introduction to the world of real-time signal acquisition and conditioning. 3rd Real Time Linux Workshop. , (2011).
  18. Neuman, K. C., Block, S. M. Optical trapping. Review of Scientific Instruments. 75, 2787-2809 (2004).
  19. Togo, T., Krasieva, T. B., Steinhardt, R. A. A decrease in membrane tension precedes successful cell-membrane repair. Mol. Biol. Cell. 11, 4339-4346 (2000).
  20. Kress, H., Stelzer, E. H., et al. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc. Natl. Acad. Sci. U.S.A. 104, 11633-11638 (2007).
  21. Togo, T. Disruption of the plasma membrane stimulates rearrangement of microtubules and lipid traffic toward the wound site. J. Cell Sci. 119, 2780-2786 (2006).
  22. Huang, H., Kamm, R. D., Lee, R. T. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1-C11 (2004).
  23. Scrimgeour, J., Eriksson, E., Goksor, M. Laser surgery and optical trapping in a laser scanning microscope. Methods Cell Biol. 82, 629-646 (2007).
  24. Carter, A. R., King, G. M., et al. Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl. Opt. 46, 421-427 (2007).
  25. Capitanio, M., Cicchi, R., Pavone, F. Position control and optical manipulation for nanotechnology applications. The European Physical Journal B. 46, 1-8 (2005).
  26. Roach, P., Parker, T., Gadegaard, N., Alexander, M. R. Surface strategies for control of neuronal cell adhesion: A review. Surface Science Reports. 65, 145-173 (2010).
check_url/fr/50477?article_type=t

Play Video

Citer Cet Article
Vassalli, M., Basso, M., Difato, F. Measurement of Tension Release During Laser Induced Axon Lesion to Evaluate Axonal Adhesion to the Substrate at Piconewton and Millisecond Resolution. J. Vis. Exp. (75), e50477, doi:10.3791/50477 (2013).

View Video