Summary

Single-celle Mikroinjektion for Cell Kommunikation Analyse

Published: February 26, 2017
doi:

Summary

Vi beskriver her, hvordan du udfører en enkelt-celle mikroinjektion af Lucifer Yellow at visualisere cellulær kommunikation via gap-junctions i levende celler, og give nogle nyttige tips. Vi forventer, at dette dokument vil hjælpe alle til at vurdere graden af ​​cellulære kobling skyldes funktionelle gap junctions. Alt her beskrevne kunne være principielt tilpasses til andre fluorescerende farvestoffer med molekylvægt under 1.000 Dalton.

Abstract

Gap junctions are intercellular channels that allow the communication of neighboring cells. This communication depends on the contribution of a hemichannel by each neighboring cell to form the gap junction. In mammalian cells, the hemichannel is formed by six connexins, monomers with four transmembrane domains and a C and N terminal within the cytoplasm. Gap junctions permit the exchange of ions, second messengers, and small metabolites. In addition, they have important roles in many forms of cellular communication within physiological processes such as synaptic transmission, heart contraction, cell growth and differentiation. We detail how to perform a single-cell microinjection of Lucifer Yellow to visualize cellular communication via gap-junctions in living cells. It is expected that in functional gap junctions, the dye will diffuse from the loaded cell to the connected cells. It is a very useful technique to study gap junctions since you can evaluate the diffusion of the fluorescence in real time. We discuss how to prepare the cells and the micropipette, how to use a micromanipulator and inject a low molecular weight fluorescent dye in an epithelial cell line.

Introduction

Gap junctions er intercellulære kanaler, der tillader indbyrdes kommunikation blandt naboceller 1. Denne meddelelse forbinder to eller flere tilstødende celler, hvor hver bidrager med en connexon eller hemichannel at danne den intercellulære kanal. I mammale celler, er det connexon dannet af seks connexiner, monomerer med fire transmembrane domæner og et C og N-terminal i cytoplasmaet 2. Gap junctions ikke kun tillader strømmen af ioner, sekundære budbringere og små metabolitter, men også bidrage til mange former for cellulær kommunikation i mange fysiologiske processer, såsom synaptisk transmission, hjerte sammentrækning, cellevækst og differentiering 3, 4, 5, 6, 7, 8. Desuden gap junctions er blevet forbundet medmange sygdomme, herunder cancer 9, 10, muskelsvind 11, nogle genetiske sygdomme og demyelinisationssygdomme 12.

Denne type af intercellulær krydstale kan evalueres ved adskillige fremgangsmåder 13, 14, 15, 16. I dette papir, viser vi, hvordan du udfører en enkelt-celle mikroinjektion af Lucifer Yellow at visualisere cellulær kommunikation via gap-junctions i levende celler. Vi diskuterer, hvordan man forbereder cellerne og mikropipetten, brugen af ​​mikromanipulator og injektion af Lucifer gult farvestof i en thymus epitelial cellelinje. Normalt kan denne eksperimentelle procedure analyseres ved gennemsnittet af forbundne celler til cellen fyldt med farvestof. Desuden kunne denne fremgangsmåde anvendes med andre fluorescerende farvestoffer med molekylvægt under mellemrummetvejkryds cut-off, som er cirka 1000 dalton.

Protocol

1. Forberedelse Celler Oprethold en kultur af en thymisk epitelcellelinie (IT76M1) eller celle, der skal testes i en inkubator (37 ° C / 5% CO2). Vask cellerne med PBS 1x (gentag dette element 3x). Tilføj Trypsin til cellerne i 5 minutter. Tilføj medium (to gange af mængden af ​​trypsin tilsat i punkt 1.3) med 10% FBS (føtalt bovint serum) til cellerne med trypsin og centrifugeres (800 xg i 5 min). Tæl cellerne i et hæmocytometer. J…

Representative Results

Thymisk epitelcellelinie IT-76MI blev anvendt til at evaluere farvestof kobling ved gap junctions som disse celler blev beskrevet at udtrykke funktionelle gap junctions dannet ved connexin 43 21. Figur 1 viser indsprøjtningen af ​​Lucifer Yellow, når den anvendes i en celle under spidsen af ​​pipetten. Efter nogle få minutter, forbundne celler bliver fluorescerende (asterisker), der angiver diffusionen af ​​det fluorescerende farvestof gennem gap ju…

Discussion

For at kontrollere tilstedeværelsen af funktionelle intercellulære gap junction, brug af sporstoffer, som er membran uigennemtrængelige, selvom gennemtrængelig af intercellulære kanaler kræves 16. Fluorescein, den første fluorescerende farvestof til at observere celle til celle kobling 22, er gennemtrængelig mellem ikke forbindelsesepitoper membraner 3 og er derfor blevet substitueret med Lucifer gult farvestof 15. I …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors dedicate this paper in honor of Prof. Gilberto Oliveira-Castro who introduced research in intercellular communication by gap junctions in Brazil. This work was funded by Capes, CNPQ and Faperj.

Materials

Lucifer yellow Sigma L0259
Lithium Chloride Sigma L4408
PBS tablets Sigma  P4417
RPMI Sigma R4130
Bovine fetal serum Cultilab
Trypsin Sigma T4799
Microscope Nikon TE-2000 For microinjection experiments, one needs an inverted fluorescence microscope and filters for fluorescent microscopy
vibration-insulated table  Newport VH3036W-OPT A vibration-insulated table is needed to protect the experiments from vibration and avoid cell damage
Micromanipulator Narishige MMO-203 This equipment allows precision adjustments of the micropipette, which is needed for cell micro injection.
Current Generator  Digitimer DS2 To produce the dye flow through the micropipette, a current below one nano ampere was given using a current generator with an electrode inside the micropipette or an amplifier which has a capacitance compensation circuit (old electrometer) or current injection functions of new patch clamp amplifiers, and the ground wire submersed in the plate dish. Alternatively, the dye can be injected by a pneumatic microinjector, following the factory recommendations.   

References

  1. Bennett, M. V., et al. Gap junctions: new tools, new answers, new questions. Neuron. 6 (3), 305-320 (1991).
  2. Orellana, J. A., Martinez, A. D., Retamal, M. A. Gap junction channels and hemichannels in the CNS: Regulation by signaling molecules. Neuropharmacology. , (2013).
  3. Peracchia, C. Structural correlates of gap junction permeation. Int Rev Cytol. 66, 81-146 (1980).
  4. Loewenstein, W. R. Junctional intercellular communication and the control of growth. Biochim Biophys Acta. 560 (1), 1-65 (1979).
  5. Alves, L. A., et al. Functional gap junctions in thymic epithelial cells are formed by connexin 43. Eur.J Immunol. 25 (2), 431-437 (1995).
  6. Alves, L. A., et al. Are there functional gap junctions or junctional hemichannels in macrophages?. Blood. 88 (1), 328-334 (1996).
  7. Fonseca, P. C., et al. Characterization of connexin 30.3 and 43 in thymocytes. Immunology letters. 94 (1-2), 65-75 (2004).
  8. Nihei, O. K., et al. Modulatory effects of cAMP and PKC activation on gap junctional intercellular communication among thymic epithelial cells. BMC Cell Biol. 11, 3 (2010).
  9. Czyz, J., Szpak, K., Madeja, Z. The role of connexins in prostate cancer promotion and progression. Nat Rev Urol. 9 (5), 274-282 (2012).
  10. El-Saghir, J. A., El-Habre, E. T., El-Sabban, M. E., Talhouk, R. S. Connexins: a junctional crossroad to breast cancer. Int J Dev Biol. 55 (7-9), 773-780 (2011).
  11. Cea, L. A., et al. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol. 245 (8), 423-436 (2012).
  12. Cotrina, M. L., Nedergaard, M. Brain connexins in demyelinating diseases: therapeutic potential of glial targets. Brain Res. 1487, 61-68 (2012).
  13. Park, H. a. n. -. A., R, S., Khanna, S. a. v. i. t. a., Sen, C. h. a. n. d. a. n. . K. Current Technologies in Single-Cell Microinjection and Application to Study Signal Transduction. Methods in Redox Signaling. , (2010).
  14. Abbaci, M., Barberi-Heyob, M., Blondel, W., Guillemin, F., Didelon, J. Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. Biotechniques. 45 (1), 33-52 (2008).
  15. Stewart, W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 14 (3), 741-759 (1978).
  16. Meda, P. Probing the function of connexin channels in primary tissues. Methods. 20 (2), 232-244 (2000).
  17. Klaunig, J. E., Shi, Y. Assessment of gap junctional intercellular communication. Curr Protoc Toxicol. , (2009).
  18. Hanani, M. Lucifer yellow – an angel rather than the devil. J Cell Mol Med. 16 (1), 22-31 (2012).
  19. Orci, L., Biochemistry, C. Blockage of Cell-to-Cell Communication within Pancreatic Acini Is Associated with Increased Basal Release of Amylase Materials and Methods Preparation of Acini. Cell. 103 (August), 475-483 (1986).
  20. Hitomi, M., et al. Differential connexin function enhances self-renewal in glioblastoma. Cell Rep. 11 (7), 1031-1042 (2015).
  21. Nihei, O. K., Campos de Carvalho, ., C, A., Spray, D. C., Savino, W., Alves, L. A. A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am J Physiol Cell Physiol. 285 (5), C1304-C1313 (2003).
  22. Kanno, Y., Loewenstein, W. R. Intercellular Diffusion. Science. 143 (3609), 959-960 (1964).
  23. Alves, L. A., Nihei, O. K., Fonseca, P. C., Carvalho, A. C., Savino, W. Gap junction modulation by extracellular signaling molecules: the thymus model. Braz J Med Biol Res. 33 (4), 457-465 (2000).
check_url/50836?article_type=t

Play Video

Cite This Article
Alberto, A. V. P., Bonavita, A. G., Fidalgo-Neto, A. A., Berçot, F., Alves, L. A. Single-cell Microinjection for Cell Communication Analysis. J. Vis. Exp. (120), e50836, doi:10.3791/50836 (2017).

View Video