Summary

贝克酵母糖精线粒体基因组表达产品的标记和可视化

Published: April 11, 2021
doi:

Summary

贝克的酵母线粒体基因组编码了八种多肽。当前协议的目标是将所有这些都标记为单独的频段,然后将其可视化为单独的频段。

Abstract

线粒体是能够有氧呼吸的真核细胞的基本细胞。它们含有圆形基因组和基因表达装置。面包师酵母的线粒体基因组编码八种蛋白质:细胞色素c氧化酶的三个亚单位(Cox1p, 考克斯2p和考克斯3p),ATP合成酶(Atp6p、Atp8p和Atp9p)的三个子单位,是紫基酚-细胞色素c氧化酶、细胞色素b(细胞色素b)和线粒体核糖体蛋白Var1p的子单位。这里描述的方法的目的是用 35S甲氨酸专门标记这些蛋白质,通过电磷分离它们,并将信号可视化为屏幕上的离散带。该过程涉及几个步骤。首先,酵母细胞在含角质的介质中培养,直到它们到达晚期对数生长阶段。其次,环素酰胺治疗阻断细胞质转化,仅允许 35S甲基氨酸在线粒体翻译产品中结合。然后,所有蛋白质都从酵母细胞中提取,并通过聚丙烯酰胺凝胶电泳分离。最后,凝胶干燥并与存储磷屏幕一起孵育。屏幕扫描在荧光仪上,显示带子。该方法可用于比较突变酵母菌株线粒体中单个多肽的生物合成率与野生菌型,这有助于研究线粒体基因表达缺陷。此协议提供了有关所有酵母线粒体 mRNA 翻译速率的宝贵信息。然而,它需要几个控制和额外的实验,以作出适当的结论。

Introduction

线粒体是深陷真核细胞代谢的细胞器。他们的电子传输链为细胞提供ATP,ATP是用于多种生化途径的主要能量货币。此外,他们参与凋亡,脂肪酸和血红素合成,和其他过程。线粒体功能障碍是人类疾病的著名来源它可以是由于核基因或线粒体基因的突变,编码细胞器2的结构或调节成分。贝克的酵母 糖精 是研究线粒体基因表达的一个很好的模型有机体,原因有几个。首先,他们的基因组被完全测序3,有很好的注释,由于与这种生物体进行的长期调查历史,大量的数据已经在文献中可用。其次,由于其快速的生长速度和高效的同源重组系统,其核基因组的处理相对快速和容易。第三,面包师的酵母 S.脑膜 是少数利用线粒体基因组进行操作的生物之一。最后,面包师的酵母是一种气样-厌食性有机体,它允许分离和研究呼吸缺陷突变体,因为它们可以在含有可发酵碳源的介质中生长。

我们描述了研究面包师酵母 S.cerevisiae 的线粒体基因表达的方法在转化水平4。它的主要原则来自几个观察。首先,酵母线粒体基因组只编码八种蛋白质:细胞色素c氧化酶的三个亚单位(Cox1p, 考克斯2p和Cox3p),ATP合成酶(Atp6p、Atp8p和Atp9p)的三个子单位,ubiquinol-细胞色素c氧化酶、细胞色素b(细胞)和线粒体核糖体蛋白Var1p5的子单位。这个数字很小,在适当条件下,所有凝胶上的电光可以分离。其次,线粒体核糖体属于原核糖体类,而不是真核生物6,因此,酵母细胞质和线粒体核糖体对抗生素的敏感性不同。它允许用环氧化物抑制细胞质转化,为标记的氨基酸(35S-甲基氨酸)仅在线粒体转化产品中结合提供条件。因此,该实验提供了有关线粒体蛋白中氨基酸的吸收率的信息,反映了八种产品中线粒体转化的整体效率。

Protocol

1. 酵母文化准备 用适当的介质在新鲜盘子上冷冻库存培养物上的条纹酵母。将盘子放入30°C的文化孵化器中,24-48小时。注意:让对温度敏感的突变体在允许的温度下生长。 接种酵母培养物在2 mL的YPGal介质(2%的肽,1%酵母提取物,2%的辣椒素)从新鲜条纹在15 mL管,并孵育他们过夜搅拌在200 rpm在30°C。 以 600 nm (OD 600) 的波长测量培养的光学密度。 以无?…

Representative Results

按照上述协议,我们从两个 S. Cerevisiae 菌株中分配线粒体翻译产品:野生类型(WT)和 AIM23 基因的突变轴承删除(AIM23Δ),编码线粒体翻译启动因子 3 (表 1)8.线粒体翻译产品在SDS-PAAG9中被放射性标记和分离。样本在饱和前每2.5分钟收集一次,以建立一个时间过程(图1A)。凝胶在为期5天的展览(图…

Discussion

基因表达研究在现代生命科学中占有核心地位。已开发出许多方法,为这一复杂的过程提供见解。在这里,我们描述了允许在面包师酵母S.脑线粒体中获取蛋白质生物合成的方法。它通常用于比较突变酵母菌株线粒体中的mRNA的翻译效率与野生类型,以获得研究突变的后果。这是研究人员在研究带有突变的酵母细胞线粒体功能时进行的基本实验之一,该细胞被建议影响线粒体8、…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究由俄罗斯基础研究基金会资助,赠款编号为18-29-07002。P.K.得到俄罗斯联邦科学和高等教育部国家分配的支持,赠款编号为AAAA-A16-116021660073-5。M.V.P.得到俄罗斯联邦科学和高等教育部的支持,赠款编号为075-15-2019-1659(库尔恰托夫基因组研究中心方案)。这项工作部分是在莫斯科国立大学发展方案框架下购买的设备上完成的。I.C、S.L.和M.V..B还得到了莫斯科国立大学授予的”诺亚方舟领先科学学校”的资助。

Materials

2-Mercaptoethanol Sigma-Aldrich M3148
Acrylamide Sigma-Aldrich A9099
Ammonium persulfate Sigma-Aldrich A3678
Bacteriological agar Sigma-Aldrich A5306 
Biowave Cell Density Meter CO8000 BIOCHROM US BE 80-3000-45
BRAND standard disposable cuvettes Sigma-Aldrich Z330361
chloroform Sigma-Aldrich 288306 
cycloheximide Sigma-Aldrich C1988 
D-(+)-Galactose Sigma-Aldrich G5388 
D-(+)-Glucose Sigma-Aldrich G7021 
digital block heater Thermo Scientific 88870001
EasyTag L-[35S]-Methionine, 500µCi (18.5MBq), Stabilized Aqueous Solution Perkin Elmer NEG709A500UC
Eppendorf Centrifuge 5425 Thermo Scientific 13-864-457
GE Storage Phosphor Screens Sigma-Aldrich GE29-0171-33
L-methionine Sigma-Aldrich M9625 
methanol Sigma-Aldrich 34860 
N,N,N′,N′-Tetramethylethylenediamine Sigma-Aldrich T9281
N,N′-Methylenebisacrylamide Sigma-Aldrich M7279
New Brunswick Innova 44/44R Shaker Incubator New Brunswick Scientific
Peptone from meat, bacteriological Millipore 91249 
Phenylmethanesulfonyl fluoride Sigma-Aldrich P7626 
Pierce 660nm Protein Assay Kit Thermo Scientific 22662
PowerPac Basic Power Supply Bio-Rad 1645050
Protean II xi cell Bio-Rad 1651802
Puromycin dihydrochloride from Streptomyces alboniger Sigma-Aldrich P8833
Sodium hydroxide Sigma-Aldrich 221465
Storm 865 phosphor imager GE Healthcare
Trizma base Sigma-Aldrich 93352 
Vacuum Heated Gel Dryer Cleaver Scientific CSL-GDVH
Yeast extract Sigma-Aldrich Y1625 

References

  1. Taylor, R. W., Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nature Reviews. Genetics. 6 (5), 389-402 (2005).
  2. Park, C. B., Larsson, N. G. Mitochondrial DNA mutations in disease and aging. The Journal of Cell Biology. 193 (5), 809-818 (2011).
  3. Goffeau, A., et al. Life with 6000 genes. Science. 274 (5287), 546-563 (1996).
  4. Westermann, B., Herrmann, J. M., Neupert, W. Analysis of mitochondrial translation products in vivo and in organello in yeast. Methods in Cell Biology. 65, 429-438 (2001).
  5. Foury, F., Roganti, T., Lecrenier, N., Purnelle, B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Letters. 440 (3), 325-331 (1998).
  6. Desai, N., Brown, A., Amunts, A., Ramakrishnan, V. The structure of the yeast mitochondrial ribosome. Science. 355 (6324), 528-531 (2017).
  7. Sasarman, F., Shoubridge, E. A. Radioactive labeling of mitochondrial translation products in cultured cells. Methods in Molecular Biology. 837, 207-217 (2012).
  8. Kuzmenko, A., et al. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Science Reports. 6, 18749 (2016).
  9. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227 (5259), 680-685 (1970).
  10. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  11. Keil, M., et al. Oxa1-ribosome complexes coordinate the assembly of cytochrome c oxidase in mitochondria. Journal of Biological Chemistry. 287 (41), 34484-34493 (2012).
  12. Singhal, R. K., et al. Coi1 is a novel assembly factor of the yeast complex III-complex IV supercomplex. Molecular Biology of the Cell. 28 (20), 2609-2622 (2017).
  13. Mick, D. U., et al. Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria. The Journal of Cell Biology. 191 (1), 141-154 (2010).
  14. Bietenhader, M., et al. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genetics. 8 (8), e1002876 (2012).
  15. Couvillion, M. T., Churchman, L. S. Mitochondrial ribosome (mitoribosome) profiling for monitoring mitochondrial translation in vivo. Current Protocols in Molecular Biology. 119, 4.28.1-4.28.25 (2017).
  16. Suhm, T., et al. A novel system to monitor mitochondrial translation in yeast. Microbial Cell. 5 (3), 158-164 (2018).
check_url/fr/62020?article_type=t

Play Video

Citer Cet Article
Chicherin, I. V., Levitskii, S. A., Baleva, M. V., Krasheninnikov, I. A., Patrushev, M. V., Kamenski, P. A. Labelling and Visualization of Mitochondrial Genome Expression Products in Baker’s Yeast Saccharomyces cerevisiae. J. Vis. Exp. (170), e62020, doi:10.3791/62020 (2021).

View Video