Summary

Метод очистки тканей для визуализации нейронов от мезоскопических до микроскопических масштабов

Published: May 10, 2022
doi:

Summary

Протокол предоставляет подробный метод визуализации нейронов в срезе мозга с использованием метода очистки тканей ScaleSF. Протокол включает в себя подготовку тканей головного мозга, осветление тканей, обработку очищенных срезов и конфокальную лазерную сканирующую микроскопическую визуализацию нейронных структур от мезоскопического до микроскопического уровней.

Abstract

Здесь представлен подробный протокол для визуализации нейронных структур от мезоскопического до микроскопического уровней в тканях мозга. Нейронные структуры, начиная от нейронных цепей и заканчивая субклеточными нейронными структурами, визуализируются в срезах мозга мыши, оптически очищенных с помощью ScaleSF. Этот метод очистки является модифицированной версией ScaleS и представляет собой гидрофильный метод очистки тканей для срезов тканей, который обеспечивает мощную очищающую способность, а также высокий уровень сохранения флуоресцентных сигналов и структурной целостности. Настраиваемая трехмерная (3D)-печатная камера визуализации предназначена для надежного монтажа очищенных тканей мозга. Мозг мыши, которому вводили аденоассоциированный вирусный вектор, несущий усиленный ген зеленого флуоресцентного белка, фиксировали 4% параформальдегидом и разрезали на срезы толщиной 1 мм с помощью вибрирующего слайсера тканей. Срезы мозга очищали в соответствии с протоколом очистки, который включал последовательные инкубации в трех растворах, а именно: раствор scaleS0, фосфатный буферный физиологический раствор (-) и раствор ScaleS4, в общей сложности 10,5-14,5 ч. Очищенные срезы мозга были установлены на камере визуализации и встроены в 1,5% агарозный гель, растворенный в растворе ScaleS4D25(0). Получение 3D-изображения срезов осуществлялось с помощью конфокального лазерного сканирующего микроскопа, оснащенного мульти-погружным объективом большого рабочего расстояния. Начиная с мезоскопической нейрональной визуализации, нам удалось визуализировать тонкие субклеточные нейронные структуры, такие как дендритные шипы и аксональные бутоны, в оптически очищенных срезах мозга. Этот протокол облегчит понимание нейронных структур от схемы до субклеточных компонентных масштабов.

Introduction

Методы очистки тканей улучшили глубинно-независимую визуализацию биологических и клинических образцов с помощью световой микроскопии, что позволяет извлекать структурную информацию на интактных тканях 1,2. Методы оптической очистки также могут потенциально ускорить и снизить стоимость гистологического анализа. В настоящее время существуют три основных подхода к очистке: гидрофильный, гидрофобный и гидрогелевой методы 1,2. Гидрофильные подходы превосходят в сохранении флуоресцентных сигналов и целостности тканей и менее токсичны по сравнению с двумя другими подходами 3,4.

Гидрофильный метод очистки, ScaleS, занимает отличительное положение с сохранением структурной и молекулярной целостности, а также мощной очищающей способностью (спектр очистки-сохранения)5. В предыдущем исследовании мы разработали протокол быстрой и изометрической очистки, ScaleSF, для срезов тканей (толщина ~ 1 мм), изменив процедуру очистки ScaleS6. Этот протокол очистки требует последовательных инкубаций срезов мозга в трех растворах в течение 10,5-14,5 ч. Метод отличается высоким спектром очистки-сохранения, который совместим даже с электронным микроскопическим (ЭМ) анализом (дополнительный рисунок 1), что позволяет создавать многомасштабную трехмерную (3D) визуализацию высокого разрешения с точной реконструкцией сигнала6. Таким образом, ScaleSF должен быть эффективен, особенно в головном мозге, где нейронные клетки развивают буйные процессы огромной длины и организуют специализированные тонкие субклеточные структуры для передачи и приема информации. Извлечение структурной информации с помощью шкал от контурного до субклеточного уровней на нейронных клетках весьма полезно для лучшего понимания функций мозга.

Здесь мы предоставляем подробный протокол для визуализации нейронных структур с масштабами от мезоскопического / схемы до микроскопического / субклеточного уровня с использованием ScaleSF. Протокол включает в себя подготовку тканей, осветление тканей, обработку очищенных тканей и конфокальную лазерную сканирующую микроскопию (CLSM) визуализацию очищенных тканей. Наш протокол фокусируется на опросе нейронных структур от схемы до субклеточных компонентных масштабов. Подробную процедуру приготовления растворов и стереотаксической инъекции векторов аденоассоциированного вируса (AAV) в мозг мыши см. в Miyawaki et al. 20167 и Okamoto et al. 20218, соответственно.

Protocol

Все эксперименты были одобрены институциональными комитетами по уходу за животными и их использованию Университета Дзюнтендо (одобрение No 2021245, 2021246) и выполнены в соответствии с Фундаментальными руководящими принципами надлежащего проведения экспериментов на животных Научным совет…

Representative Results

Оптическая очистка среза мозга мыши толщиной 1 мм была достигнута с использованием этого протокола. Рисунок 1B представляет собой изображения передачи среза мозга мыши до и после очистки. Метод очистки тканей сделал срез мозга мыши толщиной 1 мм прозрачным. Незначительное расш?…

Discussion

Критические шаги в рамках протокола
В протоколе есть несколько критических шагов, которые следует выполнять с максимальной осторожностью для получения значимых результатов. Равномерная фиксация образцов необходима для 3D-визуализации в крупномасштабных тканях. Объектив, о…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Авторы благодарят Йоко Исиду (Университет Дзюнтендо) за производство векторов AAV и Кисару Хосино (Университет Дзюнтендо) за техническую помощь. Это исследование было поддержано JSPS KAKENHI (JP20K07231 to K.Y.; JP21H03529 в Т.Ф.; JP20K07743 в М.К.; JP21H02592 в H.H.) и научные исследования по инновационной области «Резонанс био» (JP18H04743 to H.H.). Это исследование также было поддержано Японским агентством медицинских исследований и разработок (AMED) (JP21dm0207112 to T.F. и H.H.), Moonshot R&D от Японского агентства по науке и технике (JST) (JPMJMS2024 до H.H.), Fusion Oriented Research for disruptive Science and Technology (FOREST) от JST (JPMJFR204D to H.H.), Грантами в помощь от Научно-исследовательского института заболеваний пожилого возраста в Медицинской школе Университета Джунтендо (X2016 до K.Y.; X2001 – H.H.), и проект брендинга частных школ.

Materials

16x multi-immersion objective lens Leica Microsystems HC FLUOTAR 16x/0.60 IMM CORR VISIR
Agar Nacalai Tesque 01028-85
Agarose TaKaRa Bio L03
Dimethyl sulfoxide Nacalai Tesque 13407-45
D-Sorbitol Nacalai Tesque 06286-55
γ-cyclodextrin Wako Pure Chemical Industries 037-10643
Glycerol Sigma-Aldrich G9012
Huygens Essential Scientific Volume Imaging ver. 18.10.0p8/21.10.1p0 64b
Imaris Bitplane ver. 9.0.0
Leica Application Suite X Leica Microsystems LAS X, ver. 3.5.5.19976
Methyl-β-cyclodextrin Tokyo Chemical Industry M1356
Paraformaldehyde Merck Millipore 1.04005.1000
Phosphate Buffered Saline (10x; pH 7.4) Nacalai Tesque 27575-31 10x PBS(–)
Sodium azide Nacalai Tesque 31233-55
Sodium pentobarbital Kyoritsu Seiyaku N/A
TCS SP8 Leica Microsystems N/A
Triton X-100 Nacalai Tesque 35501-15
Urea Nacalai Tesque 35940-65
Vibrating tissue slicer Dosaka EM PRO7N

References

  1. Susaki, E. A., Ueda, H. R. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: Toward organism-level systems biology in mammals. Cell Chemical Biology. 23 (1), 137-157 (2016).
  2. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T., Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annual Reviews of Cell and Developmental Biology. 32, 713-741 (2016).
  3. Ueda, H. R., et al. Whole-brain profiling of cells and circuits in mammals by tissue clearing and light-sheet microscopy. Neuron. 106 (3), 369-387 (2020).
  4. Ueda, H. R., et al. Tissue clearing and its applications in neuroscience. Nature Reviews. Neuroscience. 21 (2), 61-79 (2020).
  5. Hama, H., et al. ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience. 18 (10), 1518-1529 (2015).
  6. Furuta, T., et al. Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. iScience. 25 (1), 103601 (2022).
  7. Miyawaki, A., et al. Deep imaging of cleared brain by confocal laser-scanning microscopy. Protocol Exchange. , (2016).
  8. Okamoto, S., et al. Exclusive labeling of direct and indirect pathway neurons in the mouse neostriatum by an adeno-associated virus vector with Cre/lox system. STAR Protocols. 2 (1), 100230 (2021).
  9. Kameda, H., et al. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. The European Journal of Neuroscience. 35 (6), 838-854 (2012).
  10. Sohn, J., et al. A single vector platform for high-level gene transduction of central neurons: Adeno-associated virus vector equipped with the Tet-off system. PLoS One. 12 (1), 0169611 (2017).
  11. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience. 14 (11), 1481-1488 (2011).
  12. Stepanyants, A., Martinez, L. M., Ferecsko, A. S., Kisvarday, Z. F. The fractions of short- and long-range connections in the visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 106 (9), 3555-3560 (2009).
  13. Kuramoto, E., et al. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cerebral Cortex. 19 (9), 2065-2077 (2009).
  14. Matsuda, W., et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 29 (2), 444-453 (2009).
  15. Lin, R., et al. Cell-type-specific and projection-specific brain-wide reconstruction of single neurons. Nature Methods. 15 (12), 1033-1036 (2018).
  16. Winnubst, J., et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell. 179 (1), 268-281 (2019).
  17. Neckel, P. H., Mattheus, U., Hirt, B., Just, L., Mack, A. F. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Scientific Reports. 6, 34331 (2016).
check_url/fr/63941?article_type=t

Play Video

Citer Cet Article
Yamauchi, K., Okamoto, S., Takahashi, M., Koike, M., Furuta, T., Hioki, H. A Tissue Clearing Method for Neuronal Imaging from Mesoscopic to Microscopic Scales. J. Vis. Exp. (183), e63941, doi:10.3791/63941 (2022).

View Video