Summary

青光眼诱导在程序<em>在体内</em>大鼠模型和全安装视网膜准备

Published: March 12, 2016
doi:

Summary

Glaucoma is characterized by damage to retinal ganglion cells. Inducing glaucoma in animal models can provide insight into the study of this disease. Here, we outline a procedure that induces loss of RGCs in an in vivo rat model and demonstrates the preparation of whole-mount retinas for analysis.

Abstract

青光眼是一种影响视网膜神经节细胞(RGC)的中枢神经系统的疾病。研资局轴突组成视神经进行视觉输入到大脑的视觉感受。损害视网膜神经节细胞和它们的轴突导致视力丧失和/或失明。尽管青光眼的具体原因不明,为疾病的主要危险因素之一是升高的眼内压。在动物模型青光眼诱导过程是一个有价值的工具,研究人员在研究RGC死亡的机制。这样的信息可导致可能在预防视力丧失的有助于有效的神经保护治疗的发展。本文中的协议描述诱导的青光眼的方法-像,其中50微升2M的高渗盐水注入巩膜静脉丛在体内大鼠模型的条件。血管的热烫表示成功注入。此过程会导致视网膜神经节细胞的损失来模拟青光眼。一个月以下注射后,将动物处死,眼睛被除去。接着,角膜,晶状体和玻璃体被除去以使一个眼罩。视网膜然后从眼睛的后部剥离和钉扎到使用仙人掌针SYLGARD菜肴。在这一点上,在视网膜的神经元可染色进行分析。从这个实验结果表明,相对于内部控制时,视网膜神经节细胞的约25%是在过程的一个月内丢失。这个过程允许在体内大鼠青光眼模型的视网膜神经节细胞死亡的定量分析。

Introduction

青光眼是一组影响的神经元中的视网膜,具体而言,视网膜神经节细胞1-2眼疾。这些细胞的轴突收敛到成为视神经承载可视信息,其中视觉感知的大脑。因此损害视网膜神经节细胞和其轴突导致视觉缺陷。

与青光眼疾病相关的主要特征是RGC变性和死亡,增加的眼内压(IOP),并视盘拔罐和萎缩。这些特点导致视野丧失或完全,不可逆转的失明。目前,青光眼全球7000万人造成3失明。因此,它是世界上第三大致盲4的原因。

RGC死亡的青光眼的确切机制尚不清楚。许多研究已经完成,以解开这个谜。然而,已经知道的是,青光眼的主要危险因素之一是增加我Ñ​​眼压由于房水(AH)在眼睛的前房的不规则循环。 AH充当眼睛的缺血性前房无色透明的替代血液。它滋养周围的细胞,分泌删除废物从代谢过程,运输的神经递质,并允许在病理状态1的药物和眼内炎症细胞的循环。

房水流通的维护包括睫状体和小梁网。房水由睫状体产生的。然后,它流入前房维持眼组织的总体健康状况。 75 – 房水外流的80%时,流体通过在睫状肌海绵组织的三层过滤正在积极通过非颜料睫状体上皮分泌的。穿过小梁网并通过施累姆氏管其制止所述流体排出独立实体进入血液系统5。其余20 -流出的25%绕过小梁网和通过超滤和扩散通过uveo巩膜途径被动分泌。这一途径似乎是相对独立的眼压1。

当房水的生产和流出都失去平衡,压力增大眼内。如上所述,这种增加的眼内压是在青光眼的发展的主要危险因素。这种压力导致在眼睛的回视网膜神经元的复杂的层的损伤。损伤视神经的视网膜神经节细胞轴突导致大脑不再接收准确的视觉信息。其结果是,视觉的知觉丧失,并且可以发生完全失明。

到目前为止,还没有治愈青光眼。不同的治疗方法存在的主要目的是降低眼压。这些措施包括外用药物类,如β1的肾上腺素能受体阻断剂,或局部前列腺素类似物。 β阻滞剂通过减少房水的产生7的降低眼内压。前列腺素的作用,通过增加房水8-14外流以减少眼压。 α-肾上腺素能激动剂和碳酸酐酶抑制剂也可作为治疗的辅助方法。阿尔法肾上腺素受体 ​​激动剂通过葡萄膜巩膜途径15-17加大流出。碳酸酐酶抑制剂,通过抑制酶的18降低生产AH的。更侵入性程序也被用于治疗青光眼。激光小梁成形术是用于增加房水19的流出。另一个手术疗法,称为小梁切除术,创建了一个另类的排水现场时,传统的小梁途径被阻断20-21过滤啊。

这些治疗方案已经知道EFFectively眼压降低。然而,青光眼患者的高达40%的正常显示眼压水平表明需要更完整的治疗方法。22,23此外,在青光眼看到视网膜神经节细胞的死亡是不可逆的,一旦开始,目前的治疗不停止疾病的进展24-28。这强调了靶向神经元本身的生存有效的神经保护治疗的需要。青光眼模型的发展是这一发展的关键。

在这项研究中,我们证明使用最初由莫里森29中概述的改性过程诱导成年龙Evans大鼠青光眼样作用的方法。在此过程中,2M的高渗盐水注射到巩膜静脉丛被瘢痕组织引起青光眼样的条件,以减少在小梁网,导致增加的眼内压和视网膜神经节细胞的w的显著损失水状液流出ithin程序30-31的一个月。青光眼诱导程序,如这里描述的,可能是关键解锁在青光眼治疗的新发展。

Protocol

使用受试动物的所有程序已经按照动物护理和使用委员会(IACUC)在西密歇根大学研究所的标准。 1.动物使用雄性和雌性大鼠3个月大了这项研究。 保持12小时光/暗周期动物自由获取食物和水。 2. KAX鸡尾酒动物麻醉的制备在5ml氯胺酮(100毫克/毫升)与1ml乙酰丙嗪(10毫克/毫升)和3毫升蒸馏水溶解50mg的甲苯噻嗪(20毫克/毫升)?…

Representative Results

本节说明用于诱导在体内大鼠青光眼模型青光眼样条件的装置组件和过程。我们表明用于执行高渗盐水注射导致眼内压增加的个体的工具和设备。我们展示了注入以其特有的漂白效果和前房导致的浑浊外观巩膜静脉丛。我们还描述了视网膜去除和平面安装丢失RGC的分析过程。最后,我们显示在视网膜神经节细胞存活的注射的效果。作为视网膜神经节细胞的分布是在?…

Discussion

这个协议描述诱导在体内大鼠模型青光眼样病症的方法。此过程使用高渗盐水的注射诱导疤痕在小梁网29,32。发展疤痕组织闭塞房水的流出这增加前房压力。随着流出和压力降低建立,通过弹性悬挂韧带镜头推回到玻璃体腔。玻璃体然后施加压力到视网膜损害脆弱的视网膜神经细胞。使用此过程我们的结果表明,视网膜神经节细胞数开始以2周1个月后的过程神经节细胞损失显著损?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

C. Linn is supported by an NIH grant (NIH NEI EY022795).

Materials

Xylazine hydrochloride, Minimum 99% Sigma, Life Science X1251-1G
Ketamine hydrochloride injection, USP, 100mg/mL  Putney, Inc NDC 26637-411-01 10 mL bottle
Acepromazine Maleate, 10mg/mL Phoenix Pharmaceutical, Inc NDC 57319-447-04, 670008L-03-0408 50 mL bottle
Serum bottle, 10 mL VWR 16171319 Borosilicate glass
1 mL insulin syringe  VWR BD329410 28 gauge needle 
Sodium chloride Sigma  S7653 2 M Solution 
Microelectrode Puller  Narishige Group PP-830
Heavy Polished Standard and Thin Walled Borosilicate Tubing  Sutter Instruments B150-86-10HP without filament, 0.86 mm
Microfil syringe needle for filling micropipettes World Precision Instruments, Inc MF28G
18 gauge Luer-Lock needle Fisher Scientific 1130421 Syringe needle
Flexible Polyethylene Tubing Fisher Scientific 22046941 0.034 inch diameter, approximately 10 inches 
Proparacaine Hydrochloride Opthalmic Solution, USP, 0.5% Akorn, Inc NDC 17478-263-12 15 mL  sterile bottle 
Curved Scissors Fine Science Tools 14061-11
Microscope Leica  StereoZoom 4
Hemostat Clamp  Fine Science Tools 1310912 curved edge
Triple Antibiotic Ointment  Fisher Scientific NC0664481
Scalpel handle Fine Science Tools  10004-13
Scalpel blade # 11 Fine Science Tools  10011-00
60 mm x 15 mm Disposable Petri Dish VWR 351007
Phosphate Buffered Saline 10x Concentrate Sigma, Life Science  P7059-1L 1x dilution 
Spring Scissors Fine Science Tools  15009-08
Forceps (2), Dumont # 5 Fine Science Tools 11251-30
3 mL Transfer Pipets, polyethylene, non sterile BD Biosciences 357524 or 52947-948 1 and 2 mL graduations
35 mm x 10 mm Easy Grip Petri Dish  BD Biosciences 351008
Sylgard 184 VWR 102092-312
Cactus Needles N/A N/A
Paraformaldehyde EMD Millipore  PX0055-3 or 818715.0100 Made into a 4% solution 
Triton X-100 Sigma  T9284-100 mL Made into both a 1% and 0.1% solution 
Fetal Bovine Serum  Atlanta Biological S11150 500 ml
Purified Mouse Anti-Rat CD90/mouse CD90.1 BD Pharmingen Cat 554892 1:300 dilution 
Alexa Fluor 594 goat anti-mouse  Life Technologies  A11005 1:300 dilution 
Microscope Slides Corning  2948-75×25
Glycerol  Sigma  G5516-100 mL  50% glycerol to 50% PBS, by weight 
Coverglass  Corning  2975-225 Thickness 1 22 x 50 mm 
Confocal Microscope Nikon  C2 Eclipse Ti

Riferimenti

  1. Goel, M., Picciani, R. G., Lee, R. K., Bhattacharya, S. K. Aqueous Humor Dynamics: A Review. Open Ophthalmol. J. 4, 52-59 (2010).
  2. Thylefors, B., Negrel, A. D. The global impact of glaucoma. Bull. World Health Organ. 72 (3), 323-326 (1994).
  3. Thylefors, B., Negrel, A. D., Pararajasegaram, R., Dadzie, K. Y. Global data on blindness. Bull. World Health Organ. 73 (1), 115-121 (1995).
  4. Roodhooft, J. M. Leading causes of blindness worldwide. Bull Soc. Belge. Ophtalmol. 283, 19-25 (2002).
  5. Sacca, S., Pulliero, A., Izzotti, A. The Dysfunction of the Trabecular Meshwork During Glaucoma Course. J. Cell. Physiol. 230 (3), 510-525 (2014).
  6. McKinnon, S. J., Goldberg, L. D., Peeple, P., Walt, J. G., Bramley, T. J. Current Management of Glaucoma and the Need for Complete Therapy. Am. J. Manag. Care. 14 (1 Suppl), S20-S27 (2008).
  7. Lee, D. A., Higginbotham, E. J. Glaucoma and its treatment: a review. Am. J. Health Syst. Pharm. 62, 691-699 (2005).
  8. Brandt, J. D., Vandenburgh, A. M., Chen, K., Whitcup, S. M. Bimatoprost Study Group. Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP: a 3-month clinical trial. Ophthalmology. 108, 1023-1031 (2001).
  9. Camras, C. B. Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month masked, multicenter trial in the United States. The United States Latanoprost Study Group. Ophthalmology. 103, 138-147 (1996).
  10. Netland, P. A., et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 132, 472-484 (2001).
  11. Sherwood, M., Brandt, J. Bimatoprost Study Groups 1 and 2. Six-month comparison of bimatoprost once-daily and twice-daily with timolol twice-daily in patients with elevated intraocular pressure. Surv. Ophthalmol. 45 (Suppl 4), S361-S368 (2001).
  12. Watson, P., Stjernschantz, J. A six-month, randomized, double-masked study comparing latanoprost with timolol in open-angle glaucoma and ocular hypertension. The Latanoprost Study Group. Ophthalmology. 103, 126-137 (1996).
  13. Hedman, K., Alm, A., Gross, R. L. Pooled-data analysis of three randomized double-masked, six-month studies comparing intraocular pressure-reducing effects of latanoprost and timolol in patients with ocular hypertension. J. Glaucoma. 12 (6), 463-465 (2003).
  14. Schumer, R. A., Podos, S. M. The nerve of glaucoma!. Arch. Ophthalmol. 112, 37-44 (1994).
  15. Tsai, J. C., Chang, H. W. Comparison of the effects of brimonidine 0.2% and timolol 0.5% on retinal nerve fiber layer thickness in ocular hypertensive patients: a prospective, unmasked study. J. Ocul. Pharmacol. Ther. 21 (6), 475-482 (2005).
  16. Wilhelm, B., Ludtke, H., Wilhelm, H. The BRAION Study Group. Efficacy and tolerability of 0.2% brimonidine tartrate for the treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION): a 3-month, double-masked, randomised, placebo-controlled trial. Graefes Arch. Clin. Exp. Ophthalmol. 244, 551-558 (2006).
  17. Fazzone, H. E., Kupersmith, M. J., Leibmann, J. Does topical brimonidine tartrate help NAION?. Br. J. Ophthalmol. 87, 1193-1194 (2003).
  18. Harris, A., Arend, O., Kagemann, L., Garrett, M., Chung, H. S., Martin, B. Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma. J. Ocul. Pharmacol. Ther. 15, 189-197 (1999).
  19. Leahy, K. E., White, A. J. Selective laser trabeculoplasty: current perspectives. Clin. Ophthalmol. 11 (9), 833-841 (2015).
  20. Nesaratnam, N., Sarkies, N., Martin, K. R., Shahid, H. Pre-operative intraocular pressure does not influence outcome of trabeculectomy surgery: a retrospective cohort study. BMC Ophthalmol. 15 (1), 17 (2015).
  21. Cairns, J. E. Trabeculectomy. Preliminary report of a new method. Am. J. Ophthalmol. 66 (4), 673-679 (1968).
  22. Cheng, J. W., Cai, J. P., Wei, R. L. Meta-analysis of medical intervention for normal tension glaucoma. Ophthalomology. 116 (7), 1243-1249 (2009).
  23. Dielmans, I., Vingerling, J. R., Wolfs, R. C. W., Hofman, A., Grobbee, D. E., deJong, P. T. V. M. The prevalence of primary open-angle glaucoma in a population based study in The Netherlands: the Rotterdam Study. Ophthalmology. 101, 1851-1855 (1994).
  24. Lichter, P. R., et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 108 (11), 1943-1953 (2001).
  25. Heijl, A., et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 120 (10), 1268-1279 (2002).
  26. Kass, M. A., et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120 (6), 701-713 (2002).
  27. Beidoe, G., Mousa, S. A. Current primary open-angle glaucoma treatments and future directions. Clin. Ophthalmol. 6, 1699-1707 (2012).
  28. Jeong, J. H., Park, K. H., Jeoung, J. W., Kim, D. M. Preperimetric normal tension glaucoma study: long-term clinical course and effect of therapeutic lowering of intraocular pressure. Acta. Ophthalmol. 92 (3), e185-e193 (2014).
  29. Morrison, J. C., Moore, C. G., Deppmeier, L. M., Gold, B. G., Meshul, C. K., Johnson, E. C. A Rat Model of Chronic Pressure-Induced Optic Nerve Damage. Exp. Eye Res. 64 (1), 85-96 (1997).
  30. Morrison, J. C., Johnson, E., Cepurna, W. O. Rat Models for Glaucoma Research. Prog. Brain Res. 173, 285-301 (2008).
  31. Iwamoto, K., Birkholz, P., Schipper, A., Mata, D., Linn, D. M., Linn, C. L. A Nicotinic Acetylcholine Receptor Agonist Prevents Loss of Retinal Ganglion Cells in a Glaucoma Model. Invest. Ophthalmol. Vis. Sci. 55 (2), 1078-1087 (2014).
  32. Morrison, J. C., Fraunfelder, F. W., Milne, S. T., Moore, C. G. Limbal Microvasculature of the Rat Eye. Invest. Ophthalmol. Vis. Sci. 36 (3), 751-756 (1995).
  33. McKinnon, S. J., Schlamp, C. L., Nickells, R. W. Mouse Models of Retinal Ganglion Cell Death and Glaucoma. Exp. Eye Res. 88 (4), 816-824 (2009).
  34. Maass, A., et al. Assessment of Rat and Mouse RGC Apoptosis Imaging in Vivo with Different Scanning Laser Ophthalmoscopes. Curr. Eye Res. 32 (10), 851-861 (2007).
  35. Li, Y., Schlamp, C. L., Nickells, R. W. Experimental induction of retinal ganglion cell death in adult mice. Investig. Ophthalmol. Vis. Sci. 40 (5), 1004-1008 (1999).
  36. Gross, R. L., et al. A mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans. Am. Ophthalmol. Soc. 101, 163-171 (2003).
  37. Cenni, M. C., Bonfanti, L., Martinou, J. C., Ratto, G. M., Strettoi, E., Maffei, L. Long-term survival of retinal ganglion cells following optic nerve section in adult bcl-2 transgenic mice. Eur. J. Neurosci. 8 (8), 1735-1745 (1996).
  38. Templeton, J. P., Geisert, E. E. A practical approach to optic nerve crush in the mouse. Mol. Vis. 18, 2147-2152 (2012).
  39. Schlamp, C. L., Johnson, E. C., Li, Y., Morrison, J. C., Nickells, R. W. Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol. Vis. 7, 192-201 (2001).
  40. Libby, R. T., et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 1, 17-26 (2005).
  41. Yang, Z., et al. Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Invest. Ophthalmol. Vis. Sci. 48 (12), 5539-5548 (2007).
  42. Huang, W., Fileta, J., Guo, Y., Grosskreutz, C. L. Downregulation of Thy1 in retinal ganglion cells in experimental glaucoma. Curr. Eye Res. 31 (3), 265-271 (2006).
  43. Smedowski, A., Pietrucha-Dutczak, M., Kaarniranta, K., Lewin-Kowalik, J. A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure. Sci. Rep. 4, 1-11 (2014).
  44. Cone, F. E., Gelman, S. E., Son, J. L., Pease, M. E., Quigley, H. A. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp. Eye Res. 91 (3), 415-424 (2010).
  45. Pease, M. E., Cone, F. E., Gelman, S., Son, J. L., Quigley, H. A. Calibration of the TonoLab tonometer in mice with spontaneous or experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 52 (2), 858-864 (2011).
  46. Cone, F. E., et al. The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma. Exp. Eye Res. 99, 27-35 (2012).
  47. Frankfort, B. J., et al. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 54 (1), 762-770 (2013).
  48. Sappington, R. M., Carlson, B. J., Crish, S. D., Calkins, D. J. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest. Ophthalmol. Vis. Sci. 51 (1), 207-216 (2010).
  49. Kalesnykas, G., et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 53 (7), 3847-3857 (2012).
  50. Cone-Kimball, E., et al. Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice. Mol. Vis. 19, 2023-2039 (2013).
  51. Samsel, P. A., Kisiswa, L., Erichsen, J. T., Cross, S. D., Morgan, J. E. A novel method for the induction of experimental glaucoma using magnetic microspheres. Invest. Ophthalmol. Vis. Sci. 52 (3), 1671-1675 (2011).
  52. WoldeMussie, E., Ruiz, G., Wijono, M., Wheeler, L. A. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest. Ophthalmol. Vis. Sci. 42 (12), 2849-2855 (2001).
  53. Garcia-Valenzuela, E., Shareef, S., Walsh, J., Sharma, S. C. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp. Eye Res. 61 (1), 33-44 (1995).
  54. Aihara, M., Lindsey, J. D., Weinreb, R. N. Experimental mouse ocular hypertension: establishment of the model. Investig. Ophthalmol. Vis. Sci. 44 (10), 4314-4320 (2003).
  55. Ji, J., et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vision Res. 45 (2), 169-179 (2005).
  56. Flammer, J., et al. The eye and the heart. Eur. Heart J. 34 (17), 1270-1278 (2013).
  57. Gugleta, K., et al. Association between risk factors and glaucomatous damage in untreated primary open-angle glaucoma. J. Glaucoma. 22 (6), 501-505 (2013).
  58. Mozaffarieh, M., Flammer, J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr. Opin. Pharmacol. 13 (1), 43-49 (2013).
check_url/it/53831?article_type=t

Play Video

Citazione di questo articolo
Gossman, C. A., Linn, D. M., Linn, C. Glaucoma-inducing Procedure in an In Vivo Rat Model and Whole-mount Retina Preparation. J. Vis. Exp. (109), e53831, doi:10.3791/53831 (2016).

View Video