Summary

集成张力传感器在亚微米分辨率下的成像整合和细胞力

Published: April 25, 2019
doi:

Summary

整合素张力在各种细胞功能中起着重要作用。利用集成张力传感器, 用 picoNewton (pN) 灵敏度校准整合素张力, 并以亚微米分辨率进行成像。

Abstract

整合素配体键传递的分子张力是整合素通路中的基本机械信号, 在许多细胞功能和行为中发挥着重要作用。为了对高力灵敏度和空间分辨率的图像整合子张力进行校准和图像整合, 我们开发了一种基于 dna 的集成张力传感器 (ITS)。如果维持分子张力, ITS 被激活以荧光, 从而在分子水平上将力转化为荧光信号。ITS 激活的张力阈值可在 10-60 pN 范围内进行调谐, 很好地覆盖了细胞内整合蛋白张力的动态范围。在用 ITS 接枝的基板上, 用荧光显示粘附细胞的整合素张力, 并以亚微米分辨率进行成像。ITS 还与活细胞和固定细胞的细胞结构成像兼容。ITS 已成功地应用于血小板收缩和细胞迁移的研究。本文详细介绍了智能交通系统的合成和应用在整合物传递细胞力研究中的应用。

Introduction

细胞依靠整合素来粘附和施加细胞外基质的细胞力。整合素介导的细胞粘附和力传递是细胞扩散1,2、迁移3,4 和生存5, 6,7的关键。从长期来看, 整合素生物力学信号也会影响细胞增殖8910 和分化1112.研究人员已经开发出了各种方法来测量和映射细胞矩阵界面上的整合蛋白传递的细胞力。这些方法是基于弹性底层13, 阵列微柱 14, 或原子力显微镜 (afm)15,16。弹性底层和微柱方法依靠基板的变形来报告细胞应力, 在空间分辨率和力敏感性方面存在局限性。AFM 具有较高的力灵敏度, 但不能同时检测多个点的力, 因此很难绘制整合物传递的细胞力图。

近年来, 在分子水平上研究细胞力的几种技术已经发展起来。开发了一套基于聚乙二醇17、18、蜘蛛丝肽 19和 dna20212223的分子张力传感器。可视化和监测分子蛋白传递的张力。在这些技术中, dna 首先被用作张力量系系 (tgt) 的合成材料, tgt 是一种可破坏的链接器, 可调节活细胞22,24中整合素张力的上限。后来, DNA 和荧光共振转移技术结合起来, 首先由陈氏23组和萨拉伊塔第20组创建了基于发夹 dna 的荧光张力传感器。基于发夹 dna 的张力传感器实时报告整合蛋白张力, 已成功地应用于一系列细胞功能21的研究。随后, 王的实验室将 TGT 与氟淬火器对结合起来, 报告整合素张力。这个传感器被命名为 its25,26。ITS 基于双链 DNA (dsDNA), 具有更广泛的动态范围 (10-60 pN) 的整合素张力校准。与基于发夹 dna 的传感器不同的是, ITS 不实时地报告蜂窝力, 而是将所有历史整合事件记录为细胞力的足迹;这种信号积累过程提高了细胞力成像的灵敏度, 即使使用低端荧光显微镜也可以对细胞力进行成像。ITS 的合成相对更方便, 因为它是通过杂交两个单链 Dna (ssDNA) 而产生的。

ITS 是一个18基配对 dsDNA 与生物素、荧光蛋白、淬火剂 (黑洞淬火 2 [BHQ2])27和环状精氨酰糖基环氨酸 (rgd) 肽28作为整合素肽配体 (图 1)结合而成。较低的链与荧光体结合 (Cy3 在本手稿中使用, 而其他染料, 如 Cy5 或亚历克莎系列, 也已被证明是可行的, 在我们的实验室) 和生物素标签, its 被固定在基板上的生物素-阿维丁键。上链与 rgd 肽和黑洞淬火结合, 淬火 cy3 约98% 淬火效率 26,27。根据本文提出的协议, ITS 在基板上的涂层密度约为 1100/μm 2.这是我们先前通过遵循相同的涂层协议29在中和功能基板上包覆的 18 bp 生物基化 dsdna 的密度。当细胞粘附在涂有 ITS 的基板上时, 整合蛋白通过 RGD 将 its 结合起来, 并将张力传递到 ITS。ITS 有一个特定的张力耐受性 (ttol), 它被定义为在 dsDNA 内机械分离 Its dsDNA 的张力阈值。ITS 被整合蛋白张力断裂导致淬火器与随后发出荧光的染料分离。因此, 将不可见的整合素张力转化为荧光信号, 并通过荧光成像映射细胞力。

为了证明 its 的应用, 我们在这里使用鱼类角化细胞, 这是一种广泛使用的细胞迁移模型,用于细胞迁移研究 30,31, 32, chok1 细胞, 一种常用的非运动细胞系, 和 nih 3t3 成纤维细胞。还对整合素张力和细胞结构进行了成像。

Protocol

这里描述的所有方法都得到了爱荷华州立大学动物护理和使用机构委员会 (IACUC, 8-16-8331-i) 的批准。 1. 集成张力传感器的合成 自定义和订购 ssDNAs (请参阅材料表)。注: ssDNA 序列如下所示。上链是/5Thiomc6-dgg AGG acg cg GCC/3BHQ_2/。较低的股如下所示。12 pn its:5 cycc CCG CGT CCT CCT c/3 bi/323 PN IT:5 cycc CCG CGT CCC/BIODT/CCC33 PN IT:5 cycc CCG CTG Cg/biodt/cct CCC43 pn its:5 …

Representative Results

利用 ITS 捕获了鱼类角质细胞的整合素张力图。它表明, 角质细胞在两个力轨迹上迁移并产生整合素张力 (图 2 a)。力图的分辨率被校准为 0.4μm (图 2B)。高整合素张力集中在后缘 (图 3 a)。ITS 还显示了不同细胞的不同特定模式。非运动细胞 NIH-3T3 形成了与快速迁移的角质形成细胞的特定整合蛋白张力模式 (<st…

Discussion

ITS 是一种高度可访问但功能强大的细胞力映射技术, 在合成和应用方面都是有效的。在所有材料准备好的情况下, ITS 可以在1天内合成。在实验过程中, 在细胞电镀之前只需要三个步骤的表面涂层。最近, 我们进一步简化了涂层程序, 将 ITS 与牛血清白蛋白直接连接, 从而使 ITS 能够直接物理吸附到玻璃或聚苯乙烯表面 33.ITS 将细胞力信号的荧光强度提升到可比的细胞结构成像水平。?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了爱荷华州立大学和国家普通医学研究所 (R35GM128747) 提供的启动基金的支持。

Materials

BSA-biotin Sigma-Aldrich A8549
Neutravidin Thermo Fisher Scientific 31000
Streptavidin Thermo Fisher Scientific 434301
upper strand DNA Integrated DNA Technologies N/A Customer designed. DNA sequence is shown in PROTOCOL section
lower strand DNA Integrated DNA Technologies N/A Customer designed. DNA sequences are shown in PROTOCOL section.
sulfo-SMCC Thermo Fisher Scientific A39268
Cyclic peptide RGD with an amine group Peptides International PCI-3696-PI
IMDM ATCC ‎62996227
FBS ATCC 302020
Penicillin gibco 15140122
TCEP Sigma-Aldrich C4706
200 uL petri dish Cellvis D29-14-1.5-N
NanoDrop 2000 Thermo Scientific N/A spectrometer
SE410 Tall Air-Cooled Vertical Protein Electrophoresis Unit Hoefer SE410-15-1.5 Device for electroporesis
CHO-K1 cell line ATCC CCL-61
NIH/3T3 cell line ATCC CRL-1658
Anti-Vinculin Antibody EMD Millipore 90227 Primary antibody for vinculin immunostaining
Goat anti-Mouse IgG (H+L) Superclonal Secondary Antibody, Alexa Fluor 488 Invitrogen A28175 Secondary antibody for vinculin immunostaining
Alexa Fluor 647 Phalloidin Invitrogen A22287
Eclipse Ti Nikon N/A microscope

Riferimenti

  1. Price, L. S., Leng, J., Schwartz, M. A., Bokoch, G. M. Activation of Rac and Cdc42 by Integrins Mediates Cell Spreading. Molecular Biology of the Cell. 9 (7), 1863-1871 (1998).
  2. Cavalcanti-Adam, E. A., et al. Cell Spreading and Focal Adhesion Dynamics Are Regulated by Spacing of Integrin Ligands. Biophysical Journal. 92 (8), 2964-2974 (2007).
  3. Huttenlocher, A., Horwitz, A. R. Integrins in cell migration. Cold Spring Harbor Perspectives in Biology. 3 (9), a005074 (2011).
  4. Hood, J. D., Cheresh, D. A. Role of integrins in cell invasion and migration. Nature Reviews Cancer. 2 (2), 91-100 (2002).
  5. Giancotti, F. G. Integrin signaling: specificity and control of cell survival and cell cycle progression. Current Opinion in Cell Biology. 9 (5), 691-700 (1997).
  6. Illario, M., et al. Integrin-Dependent Cell Growth and Survival Are Mediated by Different Signals in Thyroid Cells. The Journal of Clinical Endocrinology & Metabolism. 88 (1), 260-269 (2003).
  7. Aoudjit, F., Vuori, K. Integrin Signaling in Cancer Cell Survival and Chemoresistance. Chemotherapy Research and Practice. 2012, 1-16 (2012).
  8. Hou, S., et al. Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Scientific Reports. 6, 18430 (2016).
  9. Shankar, G., Davison, I., Helfrich, M. H., Mason, W. T., Horton, M. A. Integrin receptor-mediated mobilisation of intranuclear calcium in rat osteoclasts. Journal of Cell Science. 105 (Pt 1) (1), 61-68 (1993).
  10. Moreno-Layseca, P., Streuli, C. H. Signalling pathways linking integrins with cell cycle progression. Matrix Biology. 34, 144-153 (2014).
  11. Gómez-Lamarca, M. J., Cobreros-Reguera, L., Ibáñez-Jiménez, B., Palacios, I. M., Martín-Bermudo, M. D. Integrins regulate epithelial cell differentiation by modulating Notch activity. Journal of Cell Science. 127 (Pt 1), 4667-4678 (2014).
  12. Wang, H., Luo, X., Leighton, J. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. Biochemistry Insights. 8 (Suppl 1), 15-21 (2015).
  13. Schwarz, U. S., Soiné, J. R. D. Traction force microscopy on soft elastic substrates: A guide to recent computational advances. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 1853 (11), 3095-3104 (2015).
  14. Xie, T., Hawkins, J., Sun, Y., Rittié, L. Traction Force Measurement Using Deformable Microposts. Fibrosis. Methods and Protocols. , 235-244 (2017).
  15. Radmacher, M. Studying the Mechanics of Cellular Processes by Atomic Force Microscopy. Methods in Cell Biology. 83, 347-372 (2007).
  16. Charras, G. T., Lehenkari, P. P., Horton, M. A. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy. 86 (1-2), 85-95 (2001).
  17. Miller, J. S., et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials. 31 (13), 3736-3743 (2010).
  18. Legant, W. R., Miller, J. S., Blakely, B. L., Cohen, D. M., Genin, G. M., Chen, C. S. Measurement of mechanical tractions exerted by cells within three-dimensional matrices. Nature Methods. 7 (12), 969 (2010).
  19. Brenner, M. D., et al. Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing. Nano Letters. 16 (3), 2096-2102 (2016).
  20. Zhang, Y., Ge, C., Zhu, C., Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nature Communications. 5, 5167 (2014).
  21. Liu, Y., et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proceedings of the National Academy of Sciences of the United States of America. 113 (20), 5610-5615 (2016).
  22. Wang, X., Ha, T. Defining Single Molecular Forces Required to Activate Integrin and Notch Signaling. Science. 340 (6135), (2013).
  23. Blakely, B. L., et al. A DNA-based molecular probe for optically reporting cellular traction forces. Nature Methods. 11 (12), 1229-1232 (2014).
  24. Wang, Y., Wang, X. Integrins outside focal adhesions transmit tensions during stable cell adhesion. Scientific Reports. 6 (1), 36959 (2016).
  25. Wang, Y., et al. Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging. Biosensors and Bioelectronics. 100, 192-200 (2018).
  26. Zhao, Y., Wang, Y., Sarkar, A., Wang, X. Keratocytes Generate High Integrin Tension at the Trailing Edge to Mediate Rear De-adhesion during Rapid Cell Migration. iScience. 9, 502-512 (2018).
  27. Crisalli, P., Kool, E. T. Multi-Path Quenchers: Efficient Quenching of Common Fluorophores. Bioconjugate Chemistry. 22 (11), 2345-2354 (2011).
  28. Mondal, G., Barui, S., Chaudhuri, A. The relationship between the cyclic-RGDfK ligand and αvβ3 integrin receptor. Biomaterials. 34 (26), 6249-6260 (2013).
  29. Wang, X., et al. Integrin Molecular Tension within Motile Focal Adhesions. Biophysical Journal. 109 (11), 2259-2267 (2015).
  30. Euteneuer, U., Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature. 310 (5972), 58-61 (1984).
  31. Kucik, D. F., Elson, E. L., Sheetz, M. P. Cell migration does not produce membrane flow. The Journal of Cell Biology. 111 (4), 1617-1622 (1990).
  32. Mueller, J., et al. Load Adaptation of Lamellipodial Actin Networks. Cell. , (2017).
  33. Sarkar, A., Zhao, Y., Wang, Y., Wang, X. Force-activatable coating enables high-resolution cellular force imaging directly on regular cell culture surfaces. Physical Biology. 15 (6), 065002 (2018).
  34. Mosayebi, M., Louis, A. A., Doye, J. P. K., Ouldridge, T. E. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors. ACS Nano. 9 (12), 11993-12003 (2015).
  35. Bockelmann, U., Essevaz-Roulet, B., Heslot, F. Molecular Stick-Slip Motion Revealed by Opening DNA with Piconewton Forces. Physical Review Letters. 79 (22), 4489-4492 (1997).
  36. Krautbauer, R., Rief, M., Gaub, H. E. Unzipping DNA oligomers. Nano Letters. 3 (4), 493-496 (2003).
  37. de Gennes, P. G. Maximum pull out force on DNA hybrids. Comptes Rendus de l’Académie des Sciences – Series IV – Physics. 2 (10), 1505-1508 (2001).
  38. Hatch, K., Danilowicz, C., Coljee, V., Prentiss, M. Demonstration that the shear force required to separate short double-stranded DNA does not increase significantly with sequence length for sequences longer than 25 base pairs. Physical Review E. 78 (1), 011920 (2008).

Play Video

Citazione di questo articolo
Zhao, Y., Wetter, N. M., Wang, X. Imaging Integrin Tension and Cellular Force at Submicron Resolution with an Integrative Tension Sensor. J. Vis. Exp. (146), e59476, doi:10.3791/59476 (2019).

View Video