Summary

使用单链DNA免疫荧光量化卵巢癌细胞中的复制应激

Published: February 10, 2023
doi:

Summary

在这里,我们描述了一种基于免疫荧光的方法来量化细胞中单链DNA的水平。这种高效且可重复的方法可用于检查复制应激,这是几种卵巢癌的共同特征。此外,该检测与自动分析管道兼容,进一步提高了其效率。

Abstract

复制应激是几种卵巢癌的标志。复制应激可能来自多种来源,包括双链断裂、转录-复制冲突或扩增的癌基因,不可避免地导致单链 DNA (ssDNA) 的产生。因此,量化ssDNA为评估不同细胞类型和各种DNA损伤条件或治疗下的复制应激水平提供了机会。新出现的证据还表明,ssDNA可以预测对靶向DNA修复的化疗药物的反应。在这里,我们描述了一种详细的基于免疫荧光的方法来量化ssDNA。该方法涉及用胸苷类似物标记基因组,然后在非变性条件下基于抗体检测染色质的类似物。ssDNA的片段可以在荧光显微镜下可视化为病灶。病灶的数量和强度与细胞核中存在的ssDNA水平直接相关。我们还描述了一种用于量化ssDNA信号的自动化管道。该方法快速且可重复。此外,该方法的简单性使其适用于药物和遗传筛选等高通量应用。

Introduction

基因组DNA经常受到来自各种内源性和外源性的多次攻击1。内源性损伤的频率与代谢副产物(如活性氧或醛)的水平直接相关,在包括卵巢癌在内的多种癌症类型中,代谢副产物本质上更高23。必须有效地解决DNA损伤;否则,它会促进遗传毒性病变,从而诱变。细胞修复遗传毒性病变的能力依赖于无差错DNA修复途径的功能以及响应DNA损伤的细胞周期进程的有效调节。值得注意的是,许多卵巢癌在p53中具有功能失活突变,因此具有有缺陷的G1 / S检查点,导致细胞启动DNA复制,尽管存在未修复的基因组病变45。超过50%的高级别浆液性卵巢癌(HGSOC)在BRCA1和BRCA2介导的同源重组(无差错DNA修复途径)中存在缺陷,并且约20%在基因CCNE1中具有扩增,从而过早地将G1细胞推入S期6,从而使卵巢癌的DNA损伤程度进一步复杂化。.内源性DNA损伤的高频率,有缺陷的检查点和故障的修复途径共同成倍地增强了卵巢癌中基因组病变的积累。这些病变可以阻碍关键细胞过程的进展,例如DNA复制和转录。如下所述,这些障碍催化细胞中单链DNA(ssDNA)的产生。

DNA的双螺旋对于保护基因组免受多种诱变过程的影响至关重要,例如自发脱嘌呤和去嘧啶,胞嘧啶脱氨酶的活性和氧化DNA损伤17。相比之下,ssDNA极易受到这些突变事件的影响。细胞中的多个过程可导致ssDNA的产生(图1)。其中包括以下内容:

(i)DNA复制机制的停滞:这导致DNA解旋酶和聚合酶解耦,留下ssDNA89的片段。

(ii)转录机制的停滞:RNA聚合酶的持续停滞导致产生称为R环的三链杂交DNA/RNA结构。R环形成将置换的,未转录的DNA暴露为单链10

(iii)DNA末端切除:同源定向修复的开始需要产生3’ssDNA以催化寻找同源序列11

(iv)D环:同源重组过程中的链侵入可导致非模板互补链的位移,从而产生ssDNA12

(v)复制耦合间隙:在DNA复制过程中,滞后链合成以不连续的方式发生,首先产生冈崎片段,然后连接。处理冈崎片段的延迟或缺陷也可能导致ssDNA形成。最后,如果前导链上的复制叉遇到停滞的病变、DNA 聚合酶和灵长酶,PRIMPOL 可以在下游重新启动合成,从而在1314 后面留下 ssDNA 间隙。

显然,这些事件中的大多数要么发生在DNA复制机制面临基因组病变时,要么发生在复制偶联修复期间,这表明更高的DNA损伤导致ssDNA水平增加。由于许多这些事件与复制相关,因此ssDNA的形成被认为是细胞1516中“复制应激”的标志物。

在这里,我们描述了一种可用于可靠地定量细胞中ssDNA的测定方法。这种方法的简单性、可重复性和成本效益使其适合用于评估细胞中的复制应激反应。新兴研究表明,ssDNA的水平也可以预测对化疗的反应,例如PARP1 / 2酶,ATR和Wee1激酶1718,192021的抑制剂。这些抑制剂正在几种HGSOCs的治疗方案中进行研究22。因此,该测定也可以成为预测卵巢癌细胞化疗反应的有用工具。

Protocol

注意:卵巢癌细胞系OVCAR3用于这些步骤,但该协议广泛适用于多种其他细胞系,包括来自非卵巢来源的细胞系。该协议的原理图如图 2所示。 1. 电镀细胞 制作聚-L-赖氨酸涂层盖玻片。将高压灭菌的 12 mm 直径盖玻片加入含有聚-L-赖氨酸溶液的 50 mL 锥形管中,并放在摇臂上 15 分钟。 在组织培养罩中吸出溶液。通过加入无…

Representative Results

代表性图像和来自未处理细胞和用0.5mM羟基脲处理24小时的细胞核的IdU病灶的定量如图 4所示。两个细胞核均在DAPI通道中染色并可识别。对这些图像的分析包括量化每个细胞核中的病灶数量。病灶的数量与复制应激的程度成正比。 图1<str…

Discussion

正如协议中提到的,包括一些实验对照以确保测定有效是有价值的。这些包括未经IdU处理的样品以及未经一抗处理的样品。两种阴性对照都应产生被DAPI染色但不含IdU信号的细胞。

根据实验条件和所使用的细胞系,可能需要不同的抗体稀释度才能获得最佳荧光信号。信号过多可能导致无法量化单个病灶,而信号太少可能意味着无法识别样品之间的实验差异。如果背景信号过多?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

PV得到了Alvin J. Siteman癌症中心通过巴恩斯犹太医院基金会的首届踏板事业资助,Marsha Rivkin卵巢癌研究中心的试点研究资助,Mary Kay Ash基金会和V基金会的癌症研究资助。NR得到了圣路易斯华盛顿大学NIH细胞和分子生物学培训T32资助的支持。

Materials

3% Paraformaldehyde (PFA) Fisher Scientific NC0179595 10 g sucrose + 100 mL 10X PBS + water to make volume to 925 mL. Add 75 mL 40% Methanol free PFA, mix, and make aliquots of 50 mL before storage
Storage: Store in -20 °C
5-iodo-2'-deoxyuridine (IdU) Sigma Aldrich I7125-5G MW = 354.10 g/mol.For 10 mM stock: dissolve 3.541 mg IdU to 1 mL 1 N liquid ammonia
Storage: Stored in -20 °C
Anti-BrdU antibody BD Biosciences 347580 Storage: Store in 4 °C
Anti-mouse Alexa Fluor Plus 488 secondary antibody Thermo Scientific A32766 Light sensitive – keep in dark
Storage: Store in 4 °C
Bovine Serum Albumin (BSA) Sigma Aldrich A7906-100G Made by adding specific mass to volume of PBS
Storage: Store in 4 °C
Circular Cover Glass  Electron Microscopy Sciences 72230-01
NIS GA3 Software  Nikon  77010604
OVCAR3 ATCC HTB-161 Growth Media: RPMI supplemented with L-glutamine, 0.01 mg/mL bovine insulin; fetal bovine serum to a final concentration of 20% and 1X Pen Strep
Storage: Freezing Media: growth media + 5% DMSO and stored in -80 °C
Poly-L-Lysine solution Sigma Aldrich P4832-50ML Storage: Store in 4 °C
ProLong Diamond Antifade Mountant with DAPI Thermo Scientific P36962 Storage: Store in 4 °C
Trypsin-EDTA, 0.25% Genesee Scientific 25-510 Storage: Store in 4 °C
Water, sterile-filtered Sigma Aldrich W3500-6X500ML Storage: Store in 4 °C

Riferimenti

  1. Tubbs, A., Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 168 (4), 644-656 (2017).
  2. Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I., D’Andrea, A. D. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discovery. 5 (11), 1137-1154 (2015).
  3. Gee, M. E., Faraahi, Z., McCormick, A., Edmondson, R. J. DNA damage repair in ovarian cancer: Unlocking the heterogeneity. Journal of Ovarian Research. 11, 50 (2018).
  4. Labidi-Galy, S. I., et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nature communications. 8, 1093 (2017).
  5. Kroeger, P. T., Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Current Opinion in Obstetrics & Gynecology. 29 (1), 26-34 (2017).
  6. Patch, A. -. M., et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 521 (7553), 489-494 (2015).
  7. Alexandrov, L. B., et al. The repertoire of mutational signatures in human cancer. Nature. 578 (7793), 94-101 (2020).
  8. Byun, T. S., Pacek, M., Yee, M. -. C., Walter, J. C., Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes & Development. 19 (9), 1040-1052 (2005).
  9. Toledo, L. I., et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 155 (5), 1088-1103 (2013).
  10. Brickner, J. R., Garzon, J. L., Cimprich, K. A. Walking a tightrope: The complex balancing act of R-loops in genome stability. Molecular Cell. 82 (12), 2267-2297 (2022).
  11. Cejka, P., Symington, L. S. DNA end resection: Mechanism and control. Annual Review of Genetics. 55, 285-307 (2021).
  12. Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology. 7 (11), 016410 (2015).
  13. Tirman, S., Cybulla, E., Quinet, A., Meroni, A., Vindigni, A. PRIMPOL ready, set, reprime. Critical Reviews in Biochemistry and Molecular Biology. 56 (1), 17-30 (2021).
  14. Taglialatela, A., et al. REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Molecular Cell. 81 (19), 4008-4025 (2021).
  15. Cimprich, K. A., Cortez, D. ATR: An essential regulator of genome integrity. Nature Reviews. Molecular Cell Biology. 9 (8), 616-627 (2008).
  16. Tirman, S., et al. Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Molecular Cell. 81 (19), 4026-4040 (2021).
  17. Cong, K., et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Molecular Cell. 81 (15), 3128-3144 (2021).
  18. Xu, H., et al. CCNE1 copy number is a biomarker for response to combination WEE1-ATR inhibition in ovarian and endometrial cancer models. Cell Reports. Medicine. 2 (9), 100394 (2021).
  19. Konstantinopoulos, P. A., et al. A Replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nature Communications. 12, 5574 (2021).
  20. Buisson, R., Boisvert, J. L., Benes, C. H., Zou, L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Molecular Cell. 59 (6), 1011-1024 (2015).
  21. Belan, O., et al. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Molecular Cell. 82 (24), 4664-4680 (2022).
  22. da Costa, A. A. B. A., et al. Targeting replication stress in cancer therapy. Nature Reviews. Drug Discovery. 22 (1), 38-58 (2023).
  23. Chen, R., Wold, M. S. Replication protein A: Single-stranded DNA’s first responder: Dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. BioEssays. 36 (12), 1156-1161 (2014).
  24. Bhat, K. P., Cortez, D. RPA and RAD51: Fork reversal, fork protection, and genome stability. Nature Structural & Molecular Biology. 25 (6), 446-453 (2018).
  25. Maréchal, A., Zou, L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Research. 25 (1), 9-23 (2015).
check_url/it/64920?article_type=t

Play Video

Citazione di questo articolo
Ramakrishnan, N., Haseljic, E., Verma, P. Quantifying Replication Stress in Ovarian Cancer Cells Using Single-Stranded DNA Immunofluorescence. J. Vis. Exp. (192), e64920, doi:10.3791/64920 (2023).

View Video